首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, results from the linear normalization (LN) technique of Reese and Schwalbe for deriving J‐crack resistance (JR) curves have been compared, related to J–Δa (J‐integral–ductile crack growth) data points, to those obtained from traditional elastic compliance technique. Research results regarding a nuclear grade steel exhibiting a wide range of elastic–plastic fracture resistance agree quite well for both techniques until a certain level of toughness of the material. Below this critical level, LN produces inconsistent results for the sub‐sized compact tension specimens (0.4T C[T]). The evidence suggests that the loss of applicability of the LN technique can be determined on the basis of the η plastic factor (ηpl) for the best linear correlation achieved for ΔPN–Δa (normalised load gradient–ductile crack growth) data.  相似文献   

2.
The fatigue cracks growth rate of a forged HSLA steel (AISI 4130) was investigated using thin single edge notch tensile specimen to simulate the crack development on a diesel train crankshafts. The effect of load ratio, R, was investigated at room temperature. Fatigue fracture surfaces were examined by scanning electron microscopy. An approach based on the crack tip opening displacement range (ΔCTOD) was proposed as fatigue crack propagation criterion. ΔCTOD measurements were carried out using 2D‐digital image correlation techniques. J‐integral values were estimated using ΔCTOD. Under test conditions investigated, it was found that the use of ΔCTOD as a fatigue crack growth driving force parameter is relevant and could describe the crack propagation behaviour, under different load ratio R.  相似文献   

3.
4.
Linear elastic fracture mechanics describes the fracture behavior of materials and components that respond elastically under loading. This approach is valuable and accurate for the continuum analysis of crack growth in brittle and high strength materials; however it introduces increasing inaccuracies for low-strength/high-ductility alloys (particularly low-carbon steels and light metal alloys). In the case of ductile alloys, different degrees of plastic deformation precede and accompany crack initiation and propagation, and a non-linear ductile fracture mechanics approach better characterizes the fatigue and fracture behavior under elastic-plastic conditions.To delineate plasticity effects in upper Region II and Region III of crack growth an analysis comparing linear elastic stress intensity factor ranges (ΔKel) with crack tip plasticity adjusted linear elastic stress intensity factor ranges (ΔKpl) is presented. To compute plasticity corrected stress intensity factor ranges (ΔKpl), a new relationship for plastic zone size determination was developed taking into account effects of plane-strain and plane-stress conditions (“combo plastic zone”). In addition, for the upper part of the fatigue crack growth curve, elastic-plastic (cyclic J based) stress intensity factor ranges (ΔKJ) were computed from load-displacement records and compared to plasticity corrected stress intensity factor ranges (ΔKpl). A new cyclic J analysis was designed to compute elastic-plastic stress intensity factor ranges (ΔKJ) by determining cumulative plastic damage from load-displacement records captured in load-control (K-control) fatigue crack growth tests. The cyclic J analysis provides the true fatigue crack growth behavior of the material. A methodology to evaluate the lower and upper bound fracture toughness of the material (JIC and Jmax) directly from fatigue crack growth test data (ΔKFT(JIC) and ΔKFT(Jmax)) was developed and validated using static fracture toughness test results. The value of ΔKFT(JIC) (and implicitly JIC) is determined by comparing the plasticity corrected elastic fatigue crack growth curve with the elastic-plastic fatigue crack growth curve. A most relevant finding is that plasticity adjusted linear elastic stress intensity factor ranges (ΔKpl) are in remarkably good agreement with cyclic J analysis results (ΔKJ), and provide accurate plasticity corrections up to a ΔK corresponding to JIC (i.e. ΔKFT(JIC)). Towards the end of the fatigue crack growth test (above ΔKFT(JIC)) when plasticity is accompanied by significant tearing, the cyclic J analysis provides a more accurate way to capture the true behavior of the material and determine ΔKFT(Jmax). A procedure to decouple and partition plasticity and tearing effects on crack growth rates is given.Three cast Al-Si-Mg alloys with different levels of ductility, provided by different Si contents and heat treatments (T61 and T4) are evaluated, and the effects of crack tip plasticity on fatigue crack growth are assessed. Fatigue crack growth tests were conducted at a constant stress ratio, R = 0.1, using compact tension specimens.  相似文献   

5.
The energy dissipation rate, R, is considered as a measure of resistance to crack extension in elasto-plastic fracture mechanics. It can be re-evaluated from JR test records of bend and tensile specimens. Three types of Ra)-curves are identified. If crack initiation occurs close to or at maximum load, the energy dissipation rate is decreasing with crack extension and approaches a stationary value. This type of Ra)-curves can be described by an exponential function with three parameters, namely the initial value, the final stationary value, and a transition length. The cumulative JR-curves for different specimen geometries can be derived by integration. The three parameters of the Ra)-fit together with an integration constant, the initiation value, Ji, characterize ductile fracture resistance both quantitatively and physically interpretable. Constraint effects on R-curves can be quantified in terms of these parameters. A procedure for transferring JR-curves from one geometry to another is proposed.  相似文献   

6.
Abstract J R vs. Δa curves are often determined from the accumulated work Uacc operated on by an η/Bb factor, and rising JR curves are said to indicate increased resistance to fracture. It seems to have been overlooked, however, that Krafft GR resistance curves in lefm are not obtained in this way from Uacc. Indeed the concept of accumulated work during propagation does not appear in the lefm literature. This paper investigates Uacc in lefm and derives relations for ηUacc/Bb vs. Δa/b for the compact tension and 3-point notched bend testpieces. For fracture at constant Gc a series of quasi-linear plots is predicted: all have Gc as their ordinate intercept with slopes which are multiples of Gc, individual values depending on the starting (a/W). Note that ηUacc/Bb does not indicate current toughness directly during globally-elastic crack propagation; the ordinate values not coinciding with the known toughness Gc (or R, Kc etc) even in cases where there is “real”GR behaviour in the Irwin-Krafft sense.  相似文献   

7.
《Engineering Fracture Mechanics》2004,71(9-10):1325-1355
Systematic analysis of the in-plane constraint influence on J-resistance curves is presented. JR curves were also recorded and analyzed beyond the limits of crack extension inside which the stress field can be assumed to be dominated by J-integral. Three steels and four types of specimen: SEN(B), SEN(T), CCT and DENT have been tested. Along with the JR curves the fracture mechanisms have been analyzed with the help of scanning microscopy. The numerical, finite element analysis has been adopted to compute the Q-stresses, as a measure of the in-plane constraint prior to the onset of crack growth. The analysis of the stress field in front of the crack has been performed to check whether the state of stress prior to the crack growth can predetermine the way the crack will grow. It turns out that characteristic features in the JR curves runs can be predicted qualitatively from the Q(a/W) and Q(J) curves. However, there is a good correlation between Q-stress and voids diameters on fractured surfaces. Several patterns in JR curves runs have been observed for tested specimens; e.g. no influence of specimen thickness on JR curves runs was observed for side-grooved specimens. Strong influence of specimen thickness on JR curve shape was observed for non-side-grooved specimens. JR curve run higher for thinner specimens unless they are dominated by plane stress. For bent specimens JR curves run higher for shorter cracks but they run lower for specimens in tension.  相似文献   

8.
Most of the previous parameters that utilized as a crack driving force were established in modifying the parameter Kop in Elber's effective SIF range ΔKeff(=Kmax?Kop). However, the parameters that replaced the traditional parameter Kop were based on different measurements or theoretical calculations, so it is difficult to distinguish their differences. This paper focuses on the physical meaning of compliance changes caused by plastic deformation at the crack tip; the tests were carried out under different amplitude loading for structural steel. Based on these test results, differences of several parameter ΔKeff in literature are analysed and an improved two‐parameter driving force ΔKdrive(=(Kmax)nK)1‐n) has been proposed. Experimental data for several different types of materials taken from literature were used in the analyses. Presented results indicate that the ΔKdrive parameter was equally effective or better than ΔK(=Kmax?Kmin), ΔKeff(=Kmax?Kop) and ΔK*(= (Kmax)αK+)1?α) in correlating and predicting the R‐ratio effects on fatigue crack growth rate.  相似文献   

9.
Load‐controlled three‐point bending fatigue tests were conducted on API X80 pipeline steel to investigate the effects of stress ratio and specimen orientation on the fatigue crack growth behaviour. Because of the high strength and toughness of X80 steel, crack growth rate was measured and plotted versus ΔJ with stress ratio. The fatigue crack length is longer in the transverse direction, whereas the fatigue crack growth rates are nearly the same in different orientations. Finally, a new fatigue crack growth model was proposed. The effective J‐integral range was modified by ΔJp in order to correlate crack closure effect due to large‐scale yield of crack tip. The model was proved to fit well for fatigue crack growth rate of API X80 at various stress ratios of R > 0.  相似文献   

10.
Fibre‐metal laminates (FMLs) are structural composites designed with the aim of producing very low fatigue crack‐propagation rate, damage‐tolerant and high‐strength materials, if compared to aeronautical Al alloys. Their application in aeronautical structures demands a deep knowledge of a wide set of mechanical properties and technological values, including both fracture toughness and residual strength. The residual strength of FMLs have been traditionally determined by using wide centre‐cracked tension panels M(T). The use of this geometry requires large quantities of material and heavy laboratory facilities. In this work, fracture toughness ( JC) of some unidirectional FMLs laminates was measured using a recently proposed methodology for critical fracture toughness evaluation on compact tension C(T) and single‐edge bend SE(B) specimens. Additionally, residual strength values of wider M(T) specimens with different widths (W from 150 to 200 mm) and several crack to width ratios (2a/W) were experimentally obtained. Some experimental residual strength values of M(T) specimens (W from 150 to 400 mm and different 2a/W ratios) of Arall were also obtained from the bibliography. Based on JC results from C(T) and SE(B) specimens, and either using or not using crack‐tip plasticity corrections, the residual strengths of the M(T) specimens were predicted and compared to the experimental ones. The results showed good agreement, especially when crack‐tip plasticity corrections were applied.  相似文献   

11.
Imad  A.  Nait Abdelaziz  M.  Mesmacque  G. 《Strength of Materials》2004,36(4):382-390
Numerical analysis of the ductile fracture of lap welded joints has been performed for a standard CT specimen. Mono-, bi- and trimetallic CT configurations were studied in order to compare the J-integral and CTOD global approaches with a local approach (Rice and Tracey model). It is found that the above change in configuration has no impact on evolution of the global parameters, while the void growth ratio R/R0 is very sensitive to the stress and strain fields around the crack tip. Furthermore, using the parameter R/R0 distribution at the crack tip, predicted the crack propagation direction in the case of lap welded joints.  相似文献   

12.
Abstract

It is proposed that a single CT specimen can be used for determining J 0.2 at two testing conditions, provided it can be ensured that the crack tip plastic zones for the two tests do not interfere. This is achieved by extending the crack at the end of the first fracture test by fatigue cycling at ambient temperature to obtain the starting crack for the second test. This method has been validated by testing thermally aged CT specimens of modified 9Cr - 1Mo steel at 653 K and 803 K. The Ja values obtained by a multispecimen method at a specific temperature were on a single curve irrespective of whether the data were generated from the first test or second test on that sample. Also, the Ja curves obtained using a single specimen normalisation method from data on first and second tests were within the expected specimen to specimen variation.  相似文献   

13.
The fatigue crack propagation relation da/dN = f(R)ΔK2 can be derived with three assumptions: small scale yielding, material homogeneity and that crack tip stresses and strains are not strongly affected by plate thickness. f(R) is a constant at a given stress ratio, R. The effects of plate thickness and stress ratio on crack tip deformation and fatigue crack growth in 2024-T351 aluminum alloy were studied. High ΔK level in a thin specimen causes crack tip necking. Necking is more pronounced at high stress ratio. Necking causes high maximum strain near a crack tip, εmax, and fast crack growth rate. In order to avoid the effects of crack tip necking, plates thicker than 2.5 (ΔK/σY(c))2 should be used.  相似文献   

14.
The concept of J-controlled crack growth is extended to JA 2 controlled crack growth using J as the loading level and A 2 as the constraint parameter. It is shown that during crack extension, the parameter A 2 is an appropriate constraint parameter due to its independence of applied loads under fully plastic conditions or large-scale yielding. A wide range of constraint level is considered using five different types of specimen geometry and loading configuration; namely, compact tension (CT), three-point bend (TPB), single edge-notched tension (SENT), double edge-notched tension (DENT) and centre-cracked panel (CCP). The upper shelf initiation toughness J IC, tearing resistance T R and JR curves tested by Joyce and Link (1995) for A533B steels using the first four specimens are analysed. Through finite element analysis at the applied load of J IC, the values of A 2 for all specimens are determined. The framework and construction of constraint-modified JR curves using A 2 as the constraint parameter are developed and demonstrated. A procedure of transferring the JR curves determined from standard ASTM procedure to non-standard specimens or practical cracked structures is outlined. Based on the test data, the constraint-modified JR curves are presented for the test material of A533B steel. Comparison shows the experimental JR curves can be reproduced or predicted accurately by the constraint-modified JR curves for all specimens tested. Finally, the variation of JR curves with the size of test specimens is produced. The results show that larger specimens tend to have lower crack growth resistance curves.  相似文献   

15.
This paper deals with the analysis and prediction of a high-cycle fatigue behaviour in notched and damaged specimens, as well as butt-welded joints by using a threshold curve for fatigue crack propagation that includes the short crack regime (a function of crack length, a). The approach regards the effective driving force applied to the crack as the difference between the total applied driving force defined by the applied stress distribution corresponding to a given geometrical and loading configuration, ΔK(a), and the threshold for crack propagation, ΔKth(a). Chapetti’s model is used to estimate the threshold for crack propagation by using the plain fatigue limit, ΔσeR, the threshold for long cracks, ΔKthR, and the microstructural characteristic dimension (e.g. grain size). Applications, predictions and results, in good agreement with experimental results from the literature, demonstrate the ability of the method to carry out quantitative analyses of the high cycle fatigue propagation behavior (near threshold) of short cracks in different geometrical, mechanical and microstructural configurations.  相似文献   

16.
It is standard practice to use a G or J resistance curve (R-curve) to describe stable tearing. One important question is whether a JR curve generated in a fully yielded specimen is the same as the GR curve in a structure under small scale yielding. This paper argues that both the JR and GR curves are best viewed as derivatives of the energy dissipation rate D. Energy dissipation rate is not a material property, but various simple rules can be proposed to describe its likely variation with crack extension and with geometry. It is concluded that near size invariance of JR curves is approached when D is high. As the tearing resistance reduces, cracks in structurally relevant configurations will begin to extend in contained yield. Differences between JR and GR curves may then cause problems. In general, the GR curve has a shallower slope as instability approaches. If the whole JR curve (from the small specimen) is very low, it is unlikely that a material would be accepted in a structure; but, if a material has a moderately high initiation toughness, J0.2, combined with a low dJR/da (say less than 25 MPa) it becomes dangerous to rely on JR curve theory to predict crack stability in the structure. An alternative approach using energy dissipation rate is explained.  相似文献   

17.
Residual stresses due to manufacturing processes, such as welding, change the load bearing capacity of cracked components. The effects of residual stresses on crack behaviour in single edge bending specimens were investigated using Finite element analyses. Three parameters (J, Q and R) were used to study the crack behaviour. The J‐integral predicts the size scale over which large stresses and strains exist, the constraint parameter Q describes the crack‐tip constraint as a result of geometry, loading mode and crack depth and the constraint parameter R is used to describe the constraint resulting from residual stresses. To carry out a systematic investigation on the effect of residual stresses on the J‐integral and crack‐tip constraints, models under different combinations of residual stresses and external loads with different crack depths were analysed. It has been shown that the crack‐tip constraint R increased by tensile residual stresses around the crack‐tip. On the other hand, the constraint parameter R decreased and tended to zero at high external load levels.  相似文献   

18.
Mechanisms for corrosion fatigue crack propagation   总被引:2,自引:0,他引:2  
ABSTRACT The corrosion fatigue crack growth (FCG) behaviour, the effect of applied potential on corrosion FCG rates, and the fracture surfaces were studied for high‐strength low‐alloy steels, titanium alloys, and magnesium alloys. During investigation of the effect of applied potential on corrosion FCG rates, polarization was switched on for a time period in which it was possible to register the change in the crack growth rate corresponding to the open‐circuit potential and to measure the crack growth rate under polarization. Due to the higher resolution of the crack extension measurement technique, the time rarely exceeded 300 s. This approach made possible the observation of a non‐single mode effect of cathodic polarization on corrosion FCG rates. Cathodic polarization accelerated crack growth when the maximum stress intensity (Kmax) exceeded a certain well‐defined critical value characteristic for a given material‐solution combination. When Kmax was lower than the critical value, the same cathodic polarization, with all other conditions (specimen, solution, pH, loading frequency, stress ratio, temperature, etc.) being equal, retarded or had no influence on crack growth. The results and fractographic observations suggested that the acceleration in crack growth under cathodic polarization was due to hydrogen‐induced cracking (HIC). Therefore, critical values of Kmax, as well as the stress intensity range (ΔK) were regarded as corresponding to the onset of corrosion FCG according to the HIC mechanism and designated as KHIC and ΔKHIC. HIC was the main mechanism of corrosion FCG at Kmax > KHICK > ΔKHIC). For most of the material‐solution combinations investigated, stress‐assisted dissolution played a dominant role in the corrosion fatigue crack propagation at Kmax < KHICK < ΔKHIC).  相似文献   

19.
This paper presents equations for estimating the crack tip characterizing parameters C(t) and J(t), for general elastic‐plastic‐creep conditions where the power‐law creep and plasticity stress exponents differ, by modifying the plasticity correction term in published equations. The plasticity correction term in the newly proposed equations is given in terms of the initial elastic‐plastic and steady‐state creep stress fields. The predicted C(t) and J(t) results are validated by comparison with systematic elastic‐plastic‐creep FE results. Good agreement with the FE results is found.  相似文献   

20.
A method is presented for predicting JR curves for reactor pressure-vessel steels. The authors propose a procedure for determining the ductile fracture model parameters from the test results for smooth and notched cylindrical specimens. The stress and strain fields at the tip of a stationary and propagating cracks are studied by the finite-element method. The predicted JR curves are compared to the experimental data obtained for the 2T-CT-type specimens of 15Kh2NMFA-A reactor pressure-vessel steel in the initial and embrittled state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号