首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
直接占空比扰动的新型光伏自适应爬山法   总被引:2,自引:0,他引:2  
为了改进光伏发电最大功率点跟踪的控制性能,通过光伏阵列建模和全桥变换器稳态建模,对直接占空比扰动控制模式进行了原理分析,建立了光伏功率、电压和占空比之间的定量函数关系,给出了直接占空比扰动控制的控制机理,并以此为依据,提出了一种新型变步长自适应爬山法控制策略。采用PSIM仿真平台对基于直接占空比扰动的自适应爬山法的光伏发电系统进行了仿真,对比仿真实验结果验证了新型自适应爬山法的有效性和优越性。  相似文献   

2.
自适应扰动观察法在光伏MPPT中的应用与仿真   总被引:3,自引:0,他引:3  
路晓  秦立军 《现代电力》2011,28(1):80-84
为了提高光伏发电系统的输出效率,提出了基于变步长扰动观察法的最大功率点跟踪方法。该控制方法以光伏电池的数学模型为基础,以光伏输出功率的变化为判断依据,通过对光伏电池的输出电压进行调节,从而实现最大功率点跟踪。在Matlab/Simulink下进行了系统的建模与仿真,仿真结果表明该算法能够在快速跟踪最大功率点变化的情况下保证跟踪精度。这说明变步长扰动观察法具有比传统扰动观察法更优异的稳态和动态性能,能够有效提高光伏发电系统的发电效率。  相似文献   

3.
一种电流预测控制的自适应变步长最大功率跟踪方法   总被引:2,自引:0,他引:2  
针对定步长扰动观察法存在的不足(扰动步长过小,外部条件变化较快无法快速跟踪;扰动步长过大,在最大功率点功率振荡比较大),为了提高电流快速跟踪能力,提出一种基于电流预测控制的自适应变步长最大功率跟踪方法。该方法结合自适应变步长控制器和电流预测控制器各自优点,将此方法应用于中点钳位型三相三电平光伏发电系统。建立起10 kW三相三电平光伏发电系统实验平台,并与传统最大功率跟踪方法进行对比实验。实验结果表明:所提出的最大功率跟踪方法使系统具有很好的静、动态性能。  相似文献   

4.
为提高光伏发电系统的能量利用率,结合光伏发电系统输出有功功率–电压曲线的特点,提出一种基于微元面积的扰动步长分段自适应最大功率跟踪方法。在步长调整过程中,使扰动步长的调整算法与微元面积相关联,即令扰动步长的符号由微元面积的符号决定。同时,使扰动步长的大小随着微元面积大小的改变而实现自适应调整,进而实现光伏发电系统的最大功率跟踪。在MATLAB/Simulink环境中搭建仿真模型,验证算法的理论有效性及其对外界条件变化的适应性。  相似文献   

5.
一种新型光伏发电系统最大功率跟踪算法   总被引:3,自引:1,他引:2  
光伏发电系统的功率输出呈非线性,为有效利用太阳能,对光伏发电进行最大功率追踪显得尤为重要。论述了光伏发电系统输出特性和最大功率跟踪的原理,并提出一种改进的新型最大功率点追踪控制算法,即3段变步长爬山法。通过与自适应爬山法的对比实验表明,这种算法控制特性良好,能快速稳定跟踪太阳能的最大功率点,提高能量转换效率。  相似文献   

6.
为了提高直驱永磁风力发电系统的最大功率点跟踪控制性能,通过对Boost占空比变化与风力机输出特性的关系分析,提出一种基于模糊梯度步长爬山搜索法,将风力机输出转速变化量和风力机输出功率变化量作为模糊控制器的输入量,Boost变换器的占空比作为模糊控制器的输出量,实现风力机最大功率点跟踪控制。建立了系统仿真模型并进行仿真验证,结果表明,模糊梯度步长爬山搜索法能实现直驱永磁风力发电系统的最大功率点跟踪控制,控制效果优于传统变步长爬山搜索算法。  相似文献   

7.
针对定步长扰动观察法存在的不足,提出一种基于局部短路电流启动的自适应变步长最大功率跟踪方法。该方法将电流扰动(CPA)和局部短路电流(FSCC)结合,利用自适应扰动法调整扰动步长;同时在恒压启动时,引入温度调整系数,计算最大功率点补偿值,从而应对外界环境的迅速变化。文中于MATLAB/simulink建立起80 W光伏发电系统模型,与传统最大功率跟踪方法进行对比实验。实验结果表明:所提出的最大功率跟踪方法使系统具有很好的静、动态性能。  相似文献   

8.
为解决传统扰动观测法由于步长固定引起功率点的较大扰动的问题,将电导增量法与扰动观测法技术相结合应用到光伏发电最大功率点跟踪中.开展光伏电池输出模型的分析,建立了以电导增量为判断依据的变步长选择关系;同时为了解决在较大光照强度变化下可能导致最大功率点跟踪失效的问题,结合自适应神经模糊推理系统(ANFIS)建立变步长因子与光照强度的逻辑关系,提出一种基于电导增量的扰动观测法的改进算法.仿真结果表明,该算法能有效提高系统的动态响应速度和稳态精度.  相似文献   

9.
传统光伏发电系统中最大功率跟踪算法难以同时兼顾跟踪速度和跟踪精度,对此提出一种基于变占空比的最大功率跟踪控制算法.通过 MATLAB/Simulink平台进行光伏发电最大功率追踪仿真验证,运用自适应占空比扰动技术实现对最大功率的实时跟踪并不断进行动态调整使输出功率保持最大,同时与常规扰动法进行对比.仿真结果显示,变占空比的光伏发电最大功率跟踪算法可提升能量转化效率.  相似文献   

10.
为了最大限度的利用太阳能,避免因外部环境或负载突变时传统算法在最大功率点跟踪过程中出现的功率连续振荡、稳态精度低的问题,本文对光伏发电系统提出了一种变PWM步长的爬山算法。该方法是在单次迭代中确定扰动方向和步长大小来追踪最大功率点。通过仿真和实验两方面验证了变步长爬山算法在稳态和动态两种条件下MPPT系统的输出特性,并对比固定步长的爬山法对MPPT系统的性能进行了综合评估。结果表明变步长爬山算法的有效性,该方法能快速精确地搜索到光伏阵列的最大功率点,减少了响应时间、恢复时间和功率振荡,提高了光伏发电系统的能量转换效率。  相似文献   

11.
光伏系统MPPT的扰动观测法分析与改进   总被引:5,自引:0,他引:5       下载免费PDF全文
在光伏并网发电的过程中需要对光伏电池的最大功率点进行跟踪控制,来使得电池的利用率最高,提高发电效率。分析了MPPT的基本扰动观测法的原理,并且分析它的优缺点。在此基础之上提出了一种改进算法,添加对爬坡斜率的再判断,作为变步长交界点的判断依据,结合电导增量算法思想,运用变步长弱振荡的方法对光伏电池的最大功率点进行跟踪控制。最后通过仿真进行了验证,结果表明:该改进算法跟踪更稳定,消除了系统振荡,提高了精度,动态响应更好。  相似文献   

12.
通过仿真模拟分析光伏电池特性,针对传统的变步长电导增量(INC)法存在无法同时满足跟踪速率和减少振荡的问题,提出了一种基于改变步长比例因子的变步长最大功率算法,实时判断工作点的状态来选择不同的步长比例因子,从而解决MPPT控制过程中动态响应和稳态波动的这一矛盾关系。仿真结果表明:改进的算法和传统的变步长INC相比,跟踪过程更快速,跟踪结果更精确,系统输出功率在最大功率点处的振荡得以有效降低,动态性能和稳态性能都更优异。  相似文献   

13.
爬山搜索法是风力发电最大功率点的跟踪控制策略的主要方法之一。传统的爬山搜索法对于惯量大的风力发电系统,由于时间常数大使转速滞后,导致无法进行正确的搜索控制,因此,提出了改进变步长爬山搜索法,并与基于斜率变步长爬山搜索法做对比,仿真结果表明,改进之后的爬山搜索法对小型风电系统的最大功率点的跟踪有良好的效果,能够避免在风速稳定时的机械振荡和提高风能利用率。  相似文献   

14.
传统光伏发电系统多以最大功率跟踪方式并网,不具备有功调频能力,而将其改造的光伏虚拟同步发电机多以配备储能的方式实现虚拟同步功能,但储能设备过于昂贵,主电路改造成本较大。针对上述问题,在不改造传统集中式光伏逆变器主电路的情况下,提出一种基于变步长功率跟踪的有功备用式光伏虚拟同步发电机策略,通过有功备用方式实现虚拟同步功能,节省改造成本,所提方法克服了固定步长跟踪方法快速性和稳定性不能兼容的问题,并且使光伏虚拟同步发电机快速精确地提供惯性及阻尼支撑控制。仿真结果验证了所提控制策略的有效性。  相似文献   

15.
针对目前光伏发电研究中传统最大功率跟踪(Maximum Power Point Tracking,MPPT)控制算法存在受外界环境变化大而不能实现最大功率跟踪的不足,提出了一种基于RMPPT/PID双模控制的光伏发电MPPT研究方法.该方法能够实时响应外界环境变化,同传统方法相比,可以有效的缩短追踪时间,同时PID自适...  相似文献   

16.
光伏电池的输出特性具有强烈的非线性,最大功率点跟踪技术能够提高光伏系统的效率。常规定步长算法在选取步长时在响应速度和稳态精度之间无法兼顾。变步长算法在同一光照强度具有良好性能,但在光照突变时存在最大功率点跟踪死区的情况。提出了基于功率预测的新型变步长电导增量法。该方法采用一种新的步长调整系数,能够根据外界条件的变化调节步长,解决了跟踪速度与稳态精度之间的矛盾。并且当光照剧烈变化时,确保扰动前后的判断是基于同一功率曲线进行的,避免误判现象的发生。仿真验证了该算法的有效性。  相似文献   

17.
针对光伏发电系统中太阳能最大功率跟踪点(MPPT)算法的不足,基于插值计算法和变步长滞环比较法结合,提出了改进算法。该算法有效克服了传统MPPT算法中存在的误判与震荡现象,并提高了算法的精度和跟踪速度,在Matlab/Simulink下进行MPPT控制算法的建模与仿真,仿真结果表明,该算法有效提高了系统的动态响应速度和稳态精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号