首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 199 毫秒
1.
在多示例学习中引入利用未标记示例的机制,能降低训练的成本并提高学习器的泛化能力。当前半监督多示例学习算法大部分是基于对包中的每一个示例进行标记,把多示例学习转化为一个单示例半监督学习问题。考虑到包的类标记由包中示例及包的结构决定,提出一种直接在包层次上进行半监督学习的多示例学习算法。通过定义多示例核,利用所有包(有标记和未标记)计算包层次的图拉普拉斯矩阵,作为优化目标中的光滑性惩罚项。在多示例核所张成的RKHS空间中寻找最优解被归结为确定一个经过未标记数据修改的多示例核函数,它能直接用在经典的核学习方法上。在实验数据集上对算法进行了测试,并和已有的算法进行了比较。实验结果表明,基于半监督多示例核的算法能够使用更少量的训练数据而达到与监督学习算法同样的精度,在有标记数据集相同的情况下利用未标记数据能有效地提高学习器的泛化能力。  相似文献   

2.
甘睿  印鉴 《计算机科学》2012,39(7):144-147
在多示例学习问题中,训练数据集里面的每一个带标记的样本都是由多个示例组成的包,其最终目的是利用这一数据集去训练一个分类器,使得可以利用该分类器去预测还没有被标记的包。在以往的关于多示例学习问题的研究中,有的是通过修改现有的单示例学习算法来迎合多示例的需要,有的则是通过提出新的方法来挖掘示例与包之间的关系并利用挖掘的结果来解决问题。以改变包的表现形式为出发点,提出了一个解决多示例学习问题的算法——概念评估算法。该算法首先利用聚类算法将所有示例聚成d簇,每一个簇可以看作是包含在示例中的概念;然后利用原本用于文本检索的TF-IDF(Term Frequency-Inverse Document Frequency)算法来评估出每一个概念在每个包中的重要性;最后将包表示成一个d维向量——概念评估向量,其第i个位置表示第i个簇所代表的概念在某个包中的重要程度。经重新表示后,原有的多示例数据集已不再是"多示例",以至于一些现有的单示例学习算法能够用来高效地解决多示例学习问题。  相似文献   

3.
多示例多标签学习是一种新型的机器学习框架。在多示例多标签学习中,样本以包的形式存在,一个包由多个示例组成,并被标记多个标签。以往的多示例多标签学习研究中,通常认为包中的示例是独立同分布的,但这个假设在实际应用中是很难保证的。为了利用包中示例的相关性特征,提出了一种基于示例非独立同分布的多示例多标签分类算法。该算法首先通过建立相关性矩阵表示出包内示例的相关关系,每个多示例包由一个相关性矩阵表示;然后建立基于不同尺度的相关性矩阵的核函数;最后考虑到不同标签的预测对应不同的核函数,引入多核学习构造并训练针对不同标签预测的多核SVM分类器。图像和文本数据集上的实验结果表明,该算法大大提高了多标签分类的准确性。  相似文献   

4.
多数多标记学习方法通过在输出空间中,单示例同时与多个类别标记相关联表示多义性,目前有研究通过在输入空间将单一示例转化为示例包,建立包中多示例与多标记的联系。算法在生成示例包时采用等权重平均法计算每个标记对应样例的均值。由于数据具有局部分布特征,在计算该均值时考虑数据局部分布,将会使生成的示例包更加准确。本论文充分考虑数据分布特性,提出新的分类算法。实验表明改进算法性能优于其他常用多标记学习算法。  相似文献   

5.
针对有特殊结构的文本,传统的文本分类算法已经不能满足需求,为此提出一种基于多示例学习框架的文本分类算法。将每个文本当作一个示例包,文本中的标题和正文视为该包的两个示例;利用基于一类分类的多类分类支持向量机算法,将包映射到高维特征空间中;引入高斯核函数训练分类器,完成对无标记文本的分类预测。实验结果表明,该算法相较于传统的机器学习分类算法具有更高的分类精度,为具有特殊文本结构的文本挖掘领域研究提供了新的角度。  相似文献   

6.
在多示例学习(Multi-instance learning,MIL)中,核心示例对于包类别的预测具有重要作用。若两个示例周围分布不同数量的同类示例,则这两个示例的代表程度不同。为了从包中选出最具有代表性的示例组成核心示例集,提高分类精度,本文提出多示例学习的示例层次覆盖算法(Multi-instance learning with instance_level covering algorithm,MILICA)。该算法首先利用最大Hausdorff距离和覆盖算法构建初始核心示例集,然后通过覆盖算法和反验证获得最终的核心示例集和各覆盖包含的示例数,最后使用相似函数将包转为单示例。在两类数据集和多类图像数据集上的实验证明,MILICA算法具有较好的分类性能。  相似文献   

7.
集成模糊LSA与MIL的图像分类算法   总被引:1,自引:0,他引:1  
针对自然图像的分类问题,提出一种基于模糊潜在语义分析(LSA)与直推式支持向量机(TSVM)相结合的半监督多示例学习(MIL)算法.该算法将图像当作多示例包,分割区域的底层视觉特征当作包中的示例.为了将MIL问题转化成单示例问题进行求解,首先利用K-Means方法对训练包中所有的示例进行聚类,建立"视觉词汇表";然后根据"视觉字"与示例之间的距离定义模糊隶属度函数,建立模糊"词-文档"矩阵,再采用LSA方法获得多示例包(图像)的模糊潜在语义模型,并通过该模型将每个多示例包转化成单个样本;采用半监督的TSVM训练分类器,以利用未标注图像来提高分类精度.基于Corel图像库的对比实验结果表明,与传统的LSA方法相比,模糊LSA的分类准确率提高了5.6%,且性能优于其他分类方法.  相似文献   

8.
多示例多标记是一种新的机器学习框架,在该框架下一个对象用多个示例来表示,同时与多个类别标记相关联。MIMLSVM+算法将多示例多标记问题转化为一系列独立的二类分类问题,但是在退化过程中标记之间的联系信息会丢失,而E-MIMLSVM+算法则通过引入多任务学习技术对MIMLSVM+算法进行了改进。为了充分利用未标记样本来提高分类准确率,使用半监督支持向量机TSVM对E-MIMLSVM+算法进行了改进。通过实验将该算法与其他多示例多标记算法进行了比较,实验结果显示,改进算法取得了良好的分类效果。  相似文献   

9.
为了有效地解决多示例图像自动分类问题,提出一种将多示例图像转化为包空间的单示例描述方法.该方法将图像视为包,图像中的区域视为包中的示例,根据具有相同视觉区域的样本都会聚集成一簇,用聚类算法为每类图像确定其特有的“视觉词汇”,并利用负包示例标注确定的这一信息指导典型“视觉词汇”的选择;然后根据得到的“视觉词汇”构造一个新的空间—包空间,利用基于视觉词汇定义的非线性函数将多个示例描述的图像映射到包空间的一个点,变为单示例描述;最后利用标准的支持向量机进行监督学习,实现图像自动分类.在Corel图像库的图像数据集上进行对比实验,实验结果表明该算法具有良好的图像分类性能.  相似文献   

10.
手机游戏提供商通过在游戏中销售虚拟道具来获得收益。将游戏玩家日志数据中每个事件描述为一个示例,玩家对多种游戏道具的购买状态表示为多个标记,从而将游戏道具推荐问题抽象为多示例多标记学习问题。在此基础上,将快速多示例多标记学习算法用于手机网络游戏道具推荐,并利用半监督学习提升推荐性能。离线数据集以及实际在线手机网络游戏实验结果表明,基于多示例多标记学习的游戏道具推荐技术带来了游戏营收的显著增长。  相似文献   

11.
在多示例学习框架下,训练数据集由若干个包组成,包内含有多个用属性-值对形式表示的示例,系统对包内的多个示例进行学习。传统的基于多示例学习的局部离群点检测算法将多示例学习框架运用到数据集上,将多示例问题转化为单示例问题进行处理。但在示例包的转换过程中采用示例内部的特征长度所占比作为权重机制,并没有考察对结果影响较大的示例,分析原因或者动态调整其权重,从而对离群点检测的效果造成影响。针对这一问题,为了充分适应数据内部的分布特征,提出了一种基于多示例学习的局部离群点改进算法FWMIL-LOF。算法采用MIL(Multi-Instance Learning)框架,在示例包的转换过程中引入描述数据重要度的权重函数,通过定义惩罚策略对权重函数做相应调整,从而确定了不同特征属性的示例在所属包中的权重。在实际企业的实时采集监控系统中,通过仿真分析,并与其他经典局部离群点检测算法进行对比,验证了改进算法在离群点检测效果方面的提高。  相似文献   

12.
In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances, and the task is to predict the labels of unseen bags. This paper studies multi-instance learning from the view of supervised learning. First, by analyzing some representative learning algorithms, this paper shows that multi-instance learners can be derived from supervised learners by shifting their focuses from the discrimination on the instances to the discrimination on the bags. Second, considering that ensemble learning paradigms can effectively enhance supervised learners, this paper proposes to build multi-instance ensembles to solve multi-instance problems. Experiments on a real-world benchmark test show that ensemble learning paradigms can significantly enhance multi-instance learners.  相似文献   

13.
Image retrieval based on augmented relational graph representation   总被引:1,自引:1,他引:0  
The “semantic gap” problem is one of the main difficulties in image retrieval tasks. Semi-supervised learning, typically integrated with the relevance feedback techniques, is an effective method to narrow down the semantic gap. However, in semi-supervised learning, the amount of unlabeled data is usually much greater than that of labeled data. Therefore, the performance of a semi-supervised learning algorithm relies heavily on its effectiveness of using the relationships between the labeled and unlabeled data. This paper proposes a novel algorithm to better explore those relationships by augmenting the relational graph representation built on the entire data set, expected to increase the intra-class weights while decreasing the inter-class weights and linking the potential intra-class data. The augmented relational matrix can be directly used in any semi-supervised learning algorithms. The experimental results in a range of feedback-based image retrieval tasks show that the proposed algorithm not only achieves good generality, but also outperforms other algorithms in the same semi-supervised learning framework.  相似文献   

14.
基于多示例学习的异常行为检测方法   总被引:3,自引:0,他引:3  
在基于轨迹分析的异常行为检测方法中,被标记为异常的轨迹往往仅在整条轨迹的某个局部存在异常,轨迹的其余部分都是正常行为。然而,传统的基于整条轨迹建模的方法很难检测轨迹的局部异常。针对上述问题,提出一种在多示例学习框架下基于轨迹分段的异常行为检测方法。该方法首先根据轨迹的曲率,将轨迹分割成若干相互独立的子段。然后采用层次狄利克雷过程-隐马尔科夫模型对每个子段建模。最后在多示例学习框架下,以整条轨迹为包,正常轨迹为负包,异常轨迹为正包,轨迹子段为包的示例进行学习。通过实验验证,该方法在准确率和召回率上都优于传统的基于轨迹建模的方法。  相似文献   

15.
Multi-instance learning was first proposed by Dietterich et al. (Artificial Intelligence 89(1–2):31–71, 1997) when they were investigating the problem of drug activity prediction. Here, the training set is composed of labeled bags, each of which consists of many unlabeled instances. And the goal of this learning framework is to learn some classifier from the training set for correctly labeling unseen bags. After Dietterich et al., many studies about this new learning framework have been started and many new algorithms have been proposed, for example, DD, EM-DD, Citation-kNN and so on. All of these algorithms are working on the full data set. But as in single-instance learning, different feature in training set has different effect on the training about classifier. In this paper, we will study the problem about feature selection in multi-instance learning. We will extend the data reliability measure and make it select the key feature in multi-instance scenario.  相似文献   

16.
针对训练包不含标签的无监督多示例问题,本文提出了聚类和分类结合的多示例预测算法。首先利用多示例聚类算法完成无监督多示例学习的聚类任务,并根据聚类结果,将各个簇中的每个包转换成相应的k维特征向量。在标准多示例预测模型和一般性多示例预测模型上进行实验,可以得到较高的预测准确度,与其它多示例预测算法相比,本文算法具有较好的性能。  相似文献   

17.
Multiple instance learning attempts to learn from a training set consists of labeled bags each containing many unlabeled instances. In previous works, most existing algorithms mainly pay attention to the ‘most positive’ instance in each positive bag, but ignore the other instances. For utilizing these unlabeled instances in positive bags, we present a new multiple instance learning algorithm via semi-supervised laplacian twin support vector machines (called Miss-LTSVM). In Miss-LTSVM, all instances in positive bags are used in the manifold regularization terms for improving the performance of classifier. For verifying the effectiveness of the presented method, a series of comparative experiments are performed on seven multiple instance data sets. Experimental results show that the proposed method has better classification accuracy than other methods in most cases.  相似文献   

18.
In multi-instance learning, the training set is composed of labeled bags each consists of many unlabeled instances, that is, an object is represented by a set of feature vectors instead of only one feature vector. Most current multi-instance learning algorithms work through adapting single-instance learning algorithms to the multi-instance representation, while this paper proposes a new solution which goes at an opposite way, that is, adapting the multi-instance representation to single-instance learning algorithms. In detail, the instances of all the bags are collected together and clustered into d groups first. Each bag is then re-represented by d binary features, where the value of the ith feature is set to one if the concerned bag has instances falling into the ith group and zero otherwise. Thus, each bag is represented by one feature vector so that single-instance classifiers can be used to distinguish different classes of bags. Through repeating the above process with different values of d, many classifiers can be generated and then they can be combined into an ensemble for prediction. Experiments show that the proposed method works well on standard as well as generalized multi-instance problems. Zhi-Hua Zhou is currently Professor in the Department of Computer Science & Technology and head of the LAMDA group at Nanjing University. His main research interests include machine learning, data mining, information retrieval, and pattern recognition. He is associate editor of Knowledge and Information Systems and on the editorial boards of Artificial Intelligence in Medicine, International Journal of Data Warehousing and Mining, Journal of Computer Science & Technology, and Journal of Software. He has also been involved in various conferences. Min-Ling Zhang received his B.Sc. and M.Sc. degrees in computer science from Nanjing University, China, in 2001 and 2004, respectively. Currently he is a Ph.D. candidate in the Department of Computer Science & Technology at Nanjing University and a member of the LAMDA group. His main research interests include machine learning and data mining, especially in multi-instance learning and multi-label learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号