首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
S. Bahadur  C. Sunkara 《Wear》2005,258(9):1411-1421
The tribological behavior of polyphenylene sulfide (PPS) filled with inorganic nano particles was studied. The fillers investigated were TiO2, ZnO, CuO and SiC whose sizes varied from 30 to 50 nm. The polymer composites were compression molded with varying proportions of these fillers. Wear and friction tests were performed in a pin-on-disk configuration at a sliding speed of 1.0 m/s, nominal pressure of 0.65 MPa, and counterface roughness of 0.10 μm Ra. The polymer composite pins slid against hardened tool steel counterfaces. The transfer films of the composite materials formed on the counterfaces during sliding were studied by optical microscopy and X-ray photoelectron spectroscopy (XPS) and the adhesion between the transfer film and counterface was measured in terms of the peel strength. It was found that the wear rate of PPS decreased when TiO2 and CuO were used as the fillers but increased with ZnO and SiC fillers. The optimum wear resistance was obtained with 2 vol.% CuO or TiO2. These filled composites had the coefficients of friction lower than that of the unfilled PPS. The wear behavior of the composites is explained in terms of the topography of transfer film and adhesion of transfer film to the counterface as observed from peel strength studies. There is a good correlation observed between the transfer film-counterface bond strength and wear resistance.  相似文献   

2.
Zhao  Q.  Bahadur  S. 《Tribology Letters》2002,12(1):23-33
The effect of sliding variables, including counterface roughness, sliding speed, and contact pressure, on the run-in state of wear and friction was studied. Sliding was performed in the pin-on-disk configuration with a polyphenylene sulfide (PPS) pin resting on the flat steel counterface. Some experiments were also run to study the effect of air cooling and heating. Optical microscopy and scanning electron microscopy were used to study the shape and size of the wear debris, worn pin surface, and the transfer film formed on steel counterfaces. It was found that friction and wear in the run-in state were significantly affected by the sliding variables studied and their influence was closely related to the development of a transfer film during the run-in state. If the transfer film developed during initial sliding, the coefficient of friction increased and wear rate decreased. The wear rate in the run-in state increased with the increase in initial counterface roughness and there was an optimal counterface roughness of 0.06 m Ra for minimum steady state wear rate. A higher applied load led to a higher wear rate in the run-in state but that was not the case with steady state wear rate.  相似文献   

3.
Z. Eliezer  C.J. Schulz  H.E. Mecredy 《Wear》1979,52(1):133-139
Friction and wear experiments on two graphite fiber-aluminum matrix composites and two commercially pure metals (aluminum and copper) were conducted on a brake-type friction machine. The counterface material was graphitic cast iron. The composite samples were tested with the graphite fibers perpendicular to the counterface; the load varied from 5 to 100 N. The initial sliding velocity varied from 2.0 to 11.4 m s?1. The wear resistance of the HM-Al 1100 graphite fiber-aluminum matrix composite was found to be more than one order of magnitude better than that of the unreinforced matrix material. With aluminum and copper, the wear volume per braking cycle is proportional to the product of load and sliding distance in accord with both the adhesion and delamination theories of wear. For the two composite materials studied, the wear volume per braking cycle is proportional to the product of load and sliding time which cannot be explained by either of the two wear models. Thus the wear mechanism of composites might be fundamentally different from that of pure metals.  相似文献   

4.
The tribological performance of copper-concentrate (CC) mineral deposit as the filler in polyphenylene sulfide (PPS) was studied as a function of the filler proportions and sliding test variables. CC is a complex mixture of CuS, FexOy, SiO2, Al2O3, and other trace materials. The design of experiments based upon L9 (34) orthogonal arrays by Taguchi was used. Sliding tests were performed in the pin-on-disk configuration against a hardened tool steel (55-60 HRC) disk. The improvement in wear resistance of PPS was considerable with the use of fillers. The lowest steady state wear rate of 0.0030 mm3/km was obtained for PPS+20%CC+15%PTFE composition. It was two orders of magnitude lower than that of unfilled PPS. The variations in steady state coefficient of friction with the changes in filler proportions and sliding test variables were small. The transfer film was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). X-ray photoelectron microscopy (XPS) was used to detect chemical reactive species developed during sliding, especially in the interface between transfer film and its counterface. Wear particles and the polymer worn surfaces were analyzed by energy dispersive spectroscopy (EDS) for elemental distribution.  相似文献   

5.
In the current work, the effects of treating the oil palm fibres on the tribological performance of polyester composite were studied against polished stainless steel counterface using Block-on-Ring (BOR) technique under dry contact condition. Wear and friction characteristics of treated and untreated oil palm fibre reinforced polyester (T-OPRP and UT-OPRP) composites were evaluated at different sliding distances (0.85–5 km), sliding velocities (1.7–3.9 m/s) and applied loads (30–100 N). SEM observations were performed on the worn surfaces of the composites to examine the damage features. Specific wear rate (Ws), friction coefficient and interface temperature results were presented against the operating parameters. The results revealed that test parameters significantly influenced the wear performance of the composites. Both treated and untreated oil palm fibres enhanced the wear and frictional performance of polyester composites. T-OPRP showed less Ws by about 11% compared to UT-OPRP. This was due to the better interfacial adhesion offered by the treated fibres. The SEM observation made on UT-OPRP worn surface showed debonding and bending of fibres, and fragmentation and deformation on the resinous regions. Meanwhile, T-OPRP composite showed less damages compared to UT-OPRP, where no sign of fibres debonding was observed.  相似文献   

6.
The tribological behavior of polyphenylene sulfide (PPS) composites filled with micro and nano CuO particles in water-lubricated sliding condition were studied. Pin-on-disk sliding tests were performed against a steel counterface of surface roughness 0.09–0.11 μm. The lubrication regimes were established from friction data corresponding to various combinations of loads and sliding speeds. Later experiments were performed using the sliding speed of 0.5 m/s and contact pressure of 1.95 MPa, which corresponded to boundary lubrication regime. Micro CuO particles as the filler were effective in reducing the wear of PPS but nano CuO particles did not reduce wear. The steady state wear rate of PPS-30 vol.% micro CuO composite was about 10% of that of unfilled PPS and the coefficient of friction in this case was the lowest. The examination of the topography of worn pin surfaces of nano CuO-filled PPS by SEM revealed grooving features indicating three-body abrasion. The transfer films formed on the counterfaces during sliding were studied by optical microscopy and AFM. The wear behavior of the composites in water-lubricated sliding is explained using the characteristics of worn pin surfaces and transfer films on the counterface.  相似文献   

7.
The wear mechanisms of chopped strand mat (CSM) glass fibre reinforced polyester (CGRP) composite subjected to dry sliding against smooth stainless steel counterface (Ra=0.06 μm) were studied using a pin-on-disc technique. The effects of normal load (30-90 N), sliding velocity (2.8-3.9 m/s) and sliding distance (0.7-3.5 km) on friction and wear behaviour of the CGRP composite in two different CSM orientations (parallel and anti-parallel) were measured. The worn surfaces of the CGRP composite specimens for each specific test condition were examined using scanning electron microscopy (SEM).Sliding in P-orientation exhibited lower friction coefficient at lower load and higher speed compared to AP-orientation. Meanwhile, sliding in AP-orientation exhibited (15%) less friction coefficient at higher load compared to P-orientation. At higher range of all tested parameters, AP-orientation exhibited less mass loss (16%) compared to the P-orientation.Interestingly, SEM observations showed various wear mechanisms that predominated by abrasive nature. Damage of different features in the matrix and CSM glass fibre associated with higher values of load, speed, and sliding distance such as micro- and macro-cracks in the matrix, interface separation, fibre debonding and fracture, and different sizes of fractured fibres were evident.  相似文献   

8.
《Wear》2007,262(5-6):592-599
The C–W2B5 composite was fabricated by reaction hot-pressing of B4C and WC powders. The effect of applied load on the friction and wear behavior was investigated by the block-on-ring test in air. In particular, the composition and microstructural characterization of the mechanically mixed layers (MML) and wear debris formed during sliding wear were studied using scanning electron microscopy (SEM) with EDX and X-ray diffraction (XRD). The results revealed that the friction coefficients and wear rates of the composite increased with increasing testing load. The MML and wear debris generated from the sliding system had similar microstructural features and were composed of a mixture of ultrafine grained structures which mainly consisted of W2B5, Fe and Fe2O3. The formation mechanism of the MML and their influences on wear mechanism of the multiphase material were also studied on the basis of the microstructural observations.  相似文献   

9.
Reciprocating sliding wear experiments were conducted on cold-sprayed pure aluminum and Al–22.6 wt% Al2O3 coatings using a custom-built in situ tribometer. Using a transparent sapphire counterface for the wear tests, the dynamic behavior of third body material in the contact was optically observed. The presence of Al2O3 particles led to greater stability of the transfer films adhering to the sapphire counterface, as well as greater stability of the friction coefficient and lower wear rates. Ex situ microanalysis of material in the wear tracks and transfer films suggests that the presence of Al2O3 particles promoted strain localization during sliding. This produced more uniform third body microstructures and protected the underlying aluminum matrix from deformation, which slowed the rate of transfer to the counterface.  相似文献   

10.
Abstract

In the current study, the possibility of replacing woven glass fibres (WGFs) with seed oil palm fibres (SOPFs) as reinforcements for tribopolymeric composites is investigated. Mainly, two different polyester composites based on woven glass reinforced polyester (WGRP) and seed oil palm reinforced polyester (SOPRP) are developed. Different volume fractions (25, 35, and 45 vol.-%) of SOPFs were considered. The experiments were performed using a block on disc (BOD) machine and the tests were conducted under dry contact condition against smooth stainless steel counterface at 2˙8 m s–1 sliding velocity, 20 N applied load for different sliding distances (up to 5 km). The wear mechanism was categorised using a Scanning Electron Microscope (SEM). The results revealed that the steady state was reached after 4 km sliding distance for both WGRP and SOPRP composites. Seed oil palm reinforced polyester composites showed very high friction coefficient compared to WGRP. 35 vol.-% SOPRP composite exhibited a promising wear result, i.e. SOPFs are possible to replace WGFs in polymeric composites reinforcements whereas the wear resistance of the synthetic and natural composite were almost the same. The wear mechanisms for SOPRP composites were predominated by microcracks, deformation and pulledout of fibres while in the WGRP composite, abrasive nature was observed.  相似文献   

11.
J.H.C. de Souza  M. Liewald 《Wear》2010,268(1-2):241-248
Today's automotive industry shifts its focus on customised production, facing an increasing demand for medium and small batch production, where cost-effective manufacturability of sheet metal forming dies comes into the foreground. Filled polymers offer possibilities to fulfil such requirements in the ambit of prototype tools manufacturing or in small batch production of sheet metal components. This paper presents investigations dealing with tribological and tool design aspects of using polymeric materials for sheet metal forming purposes. Friction and wear behaviour of two polymer composites on sheet metal counterface materials have been investigated. A new testing method for wear evaluation of polymeric materials for sheet metal forming using a Strip Drawing Test facility is presented and discussed. A method to predict lifetime of polymeric stamping dies using the linear wear–distance relation Wl/s measured with the new testing method is also proposed. Significant improvements in friction and wear performance of polymer composites have been observed using sheet materials with structured surfaces. A theoretical model for abrasive friction and wear of polymer composites on sheet metal counterface material pairs has been developed, based on the results obtained by measurement of friction and wear.  相似文献   

12.
The friction behavior of CuO/yttria-stabilized tetragonal zirconia (3Y-TZP) composite in dry sliding against alumina at room temperature has been investigated. The results show that an alumina counterface has a crucial role on the frictional behavior when sliding against CuO/3Y-TZP composite in comparison with other counter materials. Pure 3Y-TZP shows high friction and wear under the same conditions. It is found that the friction reduction behavior is dependent on the sliding test conditions such as load and humidity. A thin aluminum-rich layer less than 200 nm thick on the contact surface during the low friction situation has been found by various analyzing techniques including interference microscopy, micro-Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microcopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The induced change of contact conditions and interfacial chemical reaction between CuO and alumina to form the phase CuAlO2 increase the wear of alumina and accelerates the formation of an aluminum-rich surface layer. The presence of such a layer in the contact is beneficial for reducing friction. After a certain sliding distance, the coefficient of friction shifts from a low value to a high value due to a change in the dominating wear mechanism. This transition is shown to be caused by a different composition and thickness of the interfacial layer.  相似文献   

13.
Utility of boric oxide particles in PTFE and epoxy composite materials, in sliding contact with stainless steel, is explored. Boric oxide filler can provide PTFE with a two-decade reduction in wear rate, to 10?5 mm3/N-m. With adequate ambient humidity reduced wear rate can be achieved without inducing counterface abrasion, and the friction of PTFE is further reduced slightly. In such environments, boric oxide fillers can also reduce friction coefficient of epoxy from μ>0.7 to as low as μ=0.07. This lubrication mechanism results from replenishment of lubricous boric acid lamellar solid provided to the sliding interface by reaction of boric oxide with ambient water. Maintenance of the lubricating effect depends upon a sufficient rate of boric acid formation, relative to subsequent removal by wear. It is demonstrated that this formation/removal balance is affected by relative humidity and volume fraction of boric oxide filler, as well as normal load and sliding speed.  相似文献   

14.
Research on the friction layer is needed to minimize friction- and wear-related mechanical failures in moving mechanical assemblies. Dry sliding tribological tests of Ni3Al matrix composites (NMCs) with 1.5 wt% graphene nanoplatelets (GNPs) sliding against different counterface balls are undertaken at the condition of 10 N–0.234 m s?1 in this study. When sliding against GCr15 steel, a uniform and thick friction layer is formed, resulting in a lower friction coefficient (0.29–0.31) and wear rate (2.0–3.1 × 10?5 mmN?1 m?1). While sliding against Al2O3 and Si3N4, the formation and stability of the friction layers are restricted in the severe wear regime, and the NMCs exhibit higher friction coefficients and wear rates. Therefore, various counterface balls have a great effect on the stability and thickness of the friction layer, thus affecting the tribology performance of NMCs. The result also shows that GNPs exhibit enrichment and self-organized microstructures in the friction layer. In addition, the friction layer is also found to be divided into two layers, protecting the subsurface from further damage and reducing shear.  相似文献   

15.
S. Bahadur 《Wear》1974,29(3):323-336
The sliding friction of bulk polymers was studied varying the normal load, contact pressure and sliding velocity. The variation of the area of apparent contact A with normal load W was also measured both under the sliding and unloaded conditions. For the sliding condition AW, while for the unloaded condition AWn where n is less than unity. The friction measurements were performed on a tribometer in the low load range and on a lathe using a strain gage dynamometer in the high load range. It was found that the coefficient of friction depends upon the velocity and pressure and the variation can be explained by the adhesion theory of friction in the light of the conditions at the interface. The measurement of sliding friction in an extrusion process shows that the coefficient of friction decreases with contact pressure and the interface friction shear stress is almost equal to the bulk shear strength of the material. All of these findings support the adhesion theory of friction for polymeric materials.  相似文献   

16.
Binshi Xu  Zixin Zhu  Wei Zhang 《Wear》2004,257(11):1089-1095
A comparative study was carried out to investigate the microstructure and tribological behavior of Fe-Al and Fe-Al/WC iron aluminide based coatings against Si3N4 under dry sliding at room temperature using a pin-on-disc tribotester. The coatings were prepared by high velocity arc spraying (HVAS) and cored wires. The effect of normal load on friction coefficient and wear rate of the coatings was studied. The microstructure and the worn surfaces of the coatings were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscope (EDS). The results showed that, the main phases in both coatings were iron aluminide (Fe3Al and FeAl) and α. WC/W2C particles were embedded in the matrix of the composite coating. With adding WC hard particles, the Fe-Al/WC composite coating exhibited higher wear-resistance than Fe-Al coating. But the friction coefficient of both coatings showed little difference. As the load increased, the friction coefficient decreases slightly due to a rise of friction contact temperature and larger areas of oxide film formation on the worn surface, which act as a solid lubricant. Increasing load causes the maximum shear stress occurring at the deeper position below the surface, thereby aggravating the wear. The coating surface is subjected to alternately tensile stress and compression stress during sliding, and the predominant wear mechanism of the coatings appears to be delamination.  相似文献   

17.
The friction and casing wear properties of PCD reinforced WC matrix composites were investigated using a cylinder-on-ring wear-testing machine against N80 casing steel counterface under dry sliding conditions. The results indicate that the friction and casing wear rate of PCD reinforced WC matrix composites are the lowest among the materials. As the applied load and sliding speed steadily increase, the friction coefficients of PCD reinforced WC matrix composites decrease. In addition, the casing wear rates increase with increasing load, but decline with sliding velocity. The dominant wear mechanism of the PCD composite is the micro-cutting wear, accompanied by adhesive wear.  相似文献   

18.
Friction and wear behavior of Al–Sn–Si alloy with MoS2 layer under lubricated condition was investigated by a reciprocating friction tester. It became clear that the Al–Sn–Si alloy with MoS2 layer showed about 70% lower friction and about 1/10 lower wear depth compared to the Al–Sn–Si alloy. The worn surfaces of the Al–Sn–Si alloy with MoS2 layer were observed and analyzed by a SEM, a TEM and an EDX. It indicated that the sliding surface of the counterface had larger area of Mo than the area of Al which was transferred from the Al–Sn–Si alloy with MoS2 layer by sliding, resulting in low friction and high wear resistance.  相似文献   

19.
Polyimide cylinders are slid under 50 N normal load and 0.3 m/s sliding velocity against carbon steel (Ra=0.2 and 0.05 μm), high-alloy steel (Ra=0.05 μm), diamond-like carbon (DLC, Ra=0.05 μm) and diamond-like nanocomposite (DLN, Ra=0.05 μm). Only for a limited range of test parameters, the friction of polyimide/DLN is lower than for polyimide/steel, while polyimide shows higher wear rates after sliding against DLN compared to steel counterfaces. The DLN coating shows slight wear scratches, although less severe than on DLC-coatings that are worn through thermal degradation. Therefore, also friction against DLC-coatings is high and unstable. Calculated bulk temperatures for steel and DLN under mild sliding conditions remain below the polyimide transition temperature of 180 °C so that other surface characteristics explain low friction on DLN counterfaces, as surface energy, structural compatibility and transfer behaviour. Friction is initially determined through adhesion and it is demonstrated that higher surface energy provides higher friction. After certain sliding time, different polyimide transfer on each counterface governs the tribological performance. Polyimide and amorphous DLC structures are characterised by C–C bonds, showing high structural compatibility and easy adherence of wear debris on the coating. However, it consists of plate-like transfer particles that act as abrasives and deteriorate the polyimide wear resistance. In sliding experiments with high-alloy steel, wear debris is washed out of the contact zone without formation of a transfer film. Transfer consists of island-like particles for smooth carbon steel and it forms a more homogeneous transfer film on rough carbon steel. The latter thick and protective film is favourable for low wear rates; however, it causes higher friction than smooth counterfaces.  相似文献   

20.
Peter J. Blau 《Wear》1981,71(1):29-43
Despite their complexities, friction and wear break-in behavior can provide important clues to the individual mechanistic contributions which interact to bring about longer-term sliding conditions. Because more than one mechanism could be responsible for given break-in curve shapes, more extensive experimentation in the effects of materials on the early stages of sliding needs to be undertaken. One method of relating friction and wear break-in behavior is the “break-in map” in which the duration (i.e. time, number of cycles or sliding distance) required for the attainment of a constant average friction coefficient is simply plotted against the duration required for the achievement of a constant wear rate under the same conditions. A method of portraying frictional break-ins is to plot the difference in the friction between initial sliding and steady state sliding against the break-in duration. The friction-wear method may facilitate wear-in monitoring in machinery while the friction difference-break-in duration method may lead to a better understanding of sliding friction mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号