首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
崔旭梅  左承阳  蓝德均  王军  黄载春 《功能材料》2012,43(11):1386-1388
采用丝网印刷的方式制备了染料敏化太阳能电池的TiO2薄膜光阳极、TiO2-ZnO复合薄膜光阳极以及TiO2/ZnO双层薄膜光阳极,研究了ZnO对TiO2薄膜光阳极的调制改性作用。研究结果表明分别以醋酸锌和ZnO直接掺杂制备的TiO2-ZnO复合薄膜光阳极同未掺杂的TiO2薄膜光阳极相比,以醋酸锌为原料制备的复合薄膜光阳极使电池转换效率提高了1倍,而由于微米量级的ZnO的粒径大,用其作原料制得的复合薄膜光阳极反而使电池的转换效率有所降低。以醋酸锌为原料制备的TiO2/ZnO双层薄膜光阳极同TiO2薄膜光阳极相比,电池转换效率提高了13倍,通过性能优化后电池的转换效率达到4.7%。  相似文献   

2.
Highly crystalline mesoporous anatase TiO(2) is prepared through supramolecular self-assembly and by utilizing cetyltrimethylammonium bromide (CTAB) as templating material. Photoanodes of dye-sensitized solar cells (DSSCs) made from these TiO(2) nanoparticles are found to have a high specific surface area of 153 m(2)/g and high surface roughness. Optical absorption spectroscopy studies reveal that the photoanode films adsorb four times more dye than films made of commercial P25 TiO(2). Mercury porosimetry and field emission scanning electron microscope (FESEM) studies show hierarchical macro- and meso-porosity of the photoanode films leading to better dye and electrolyte percolation, combined with improved electron conduction pathways compared to P25 films. Electrochemical impedance studies confirm lower impedance and higher electron lifetime in the synthesized mesoporous TiO(2) films compared to P25 films. Higher photovoltaic efficiency was recorded of cells made from the synthesized mesoporous TiO(2) in comparison to the corresponding cells made from P25. Incident-photon-to-current efficiency data provided critical understanding of recombination kinetics, and provided proof of Mie scattering by the self-assembled submicrometer sized TiO(2) aggregates and the macropores in their structure. The scattering phenomenon was further corroborated by diffused reflectance studies. An in-depth analysis of CTAB-templated mesoporous TiO(2) has been conducted to show how it can be a good candidate photoanode material for enhancing the performance of DSSCs.  相似文献   

3.
The nanostructured TiO2 films have deposited on SnO2:F (FTO) coated glass substrate by spray pyrolysis technique at different substrate temperatures of 200-500 degrees C. The structural, surface morphological and optical properties of TiO2 films significantly vary with the substrate temperature. The surface of the TiO2 films deposited at 400 degrees C shows the nanoflakes and short nanorods (approximately 130 nm) like structures while the TiO2 films prepared at 500 degrees C shows only the nanoflakes like structures. The band gap of the TiO2 films prepared at higher temperatures (300-500 degrees C) becomes narrow due to presence the rutile phases in their crystal structure. Ruthenium (II) complex as a dye, KI/I2 as an electrolyte and carbon on FTO glass as a counter electrode has used to fabricate the dye-sensitized solar cell (DSC). The TiO2 film deposited at 400 degrees C has showed the best photovoltaic performance in DSC with the efficiency of 3.81%, the photovoltage of 773 mV, the photocurrent of 8.34 mA/cm2, and the fill factor of 56.17%. The photovoltage of the DSC increases with the increase of substrate temperature during the deposition of TiO2 films. Moreover, all the DSCs exhibit reasonably high fill factor value.  相似文献   

4.
A high efficient dye-sensitized solar cell (DSC) was fabricated using nitrogen-doped nanocrystalline titania(TiO2) photoanode. X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectroscopy (DRS), X-ray powder diffraction (XRD), zeta potentials, nitrogen adsorption-desorption and elemental analysis experiments were employed to characterize the nitrogen-doped nanocrystalline TiO2 photoanode. An obvious enhancement of the optical absorption in the range of 380-550 nm was observed for nitrogen-doped TiO2, which was attributed to both the substitutional N and the chemisorbed N2 molecules. A conversion efficiency of 9.04% was obtained on the DSC based on nitrogen-doped TiO2 photoanode annealed in a flow of NH3 at 550 degrees C, with an increase of 15.6% improvement in comparison with pure TiO2 (7.82%). The mechanism for the enhanced photovoltaic performance was discussed.  相似文献   

5.
The production of hydrogen from water (called "water splitting"), utilises sunlight as an energy source (solar-hydrogen) in a photoelectrochemical (PEC) solar cell, is a promising source of green energy. In this work, a PEC was used, for evaluating the photoactivity of a thin film TiO2 based photoanode by measuring photocurrent (which is comparable to hydrogen production rate by water splitting process in PEC). The main focus of this work is to study the effect of the TiO2 nanosurface and bulk properties on the photoresponse properties of the photoanode. The TiO2 coatings (360-400 nm) were deposited using a closed field reactive magnetron sputtering system. The structure and morphology of the TiO2 coatings were systematically altered by varying the deposition pressure between 5 x 10(-4) to 1 x 10(-2) mbar. The properties of the deposited nano-coatings were determined using Ellipsometry, SEM, AFM, profilometry, XPS, Raman and X-ray diffraction (XRD). Coating properties were correlated with the light absorption and photocurrent performance which were evaluated using UV-Vis spectroscopy and tri-electrode potentiostat measurements respectively. It was concluded from this study that the coating deposition pressure has a pronounced effect on the TiO2 photoanode properties leading to a significant enhancement in the photoactivity in PEC cell. Over a six fold increase in photocurrent at applied potential 0 V was observed for TiO2 photoanode prepared at 4 x 10(-3) mbar as compared to 5 x 10(-4) mbar. A correlation has been established between the deposition pressure, nano surface morphology and bulk properties, UV-Vis light absorbance and bandgap value, and the consequently higher (i) photocurrent density, (ii) negative flat band, and (iii) open circuit potential measured in Photoelectrochemical (PEC) cell.  相似文献   

6.
A CdS/CdSe quantum-dot (QD)-cosensitized TiO(2) film has been fabricated using a microwave-assisted chemical bath deposition technique and used as a photoanode for QD-sensitized solar cells. The technique allows a direct and rapid deposition of QDs and forms a good contact between QDs and TiO(2) films. The photovoltaic performance of the as-prepared cell is investigated. The results show that the performance of the CdS/CdSe-cosensitized cell achieves a short-circuit current density of 16.1 mA cm(-2) and a power conversion efficiency of 3.06% at one sun (AM 1.5 G, 100 mW cm(-2)), which is comparable to the one fabricated using conventional successive ionic layer adsorption and reaction technique.  相似文献   

7.
A novel approach has been developed to fabricate hills-like hierarchical structured TiO2 photoanodes for dye-sensitized solar cells (DSSCs). The appropriately aggregated TiO2 clusters in the photoanode layer could cause stronger light scattering and higher dye loading that increases the efficiency of photovoltaic device. For detailed light-harvesting study, different molecular weights of polyvinyl alcohol (PVA) were used as binders for TiO2 nanoparticles (P-25 Degussa) aggregation. A series of TiO2 films with dissimilar morphology, the reflection of TiO2 films, absorbance of attached dye, amount of dye loading, and performance of fabricated DSSC devices, were measured and investigated. An optimized device had energy conversion efficiency of 4.47% having a higher dye loading and good light harvesting, achieving a 23% increase of short-circuit current J(sc) in DSSCs.  相似文献   

8.
Herein, we present a straightforward bottom-up synthesis of a high electron mobility and highly light scattering macroporous photoanode for dye-sensitized solar cells. The dense three-dimensional Al/ZnO, SnO(2), or TiO(2) host integrates a conformal passivation thin film to reduce recombination and a large surface-area mesoporous anatase guest for high dye loading. This novel photoanode is designed to improve the charge extraction resulting in higher fill factor and photovoltage for DSCs. An increase in photovoltage of up to 110 mV over state-of-the-art DSC is demonstrated.  相似文献   

9.
The Pluronic P123 templated mesoporous TiO2 film was grown via layer-by-layer deposition and characterized by a novel methodology based on the adsorption of n-pentane. Multiple-layer depositions did not perturb the mesoporous structure significantly. Our TiO2 film was sensitized by a newly developed Ru-bipyridine dye (N945) and was applied as a photoanode in dye-sensitized solar cell. The 1-microm-thick mesoporous film, made by the superposition of three layers, showed enhanced solar conversion efficiency by about 50% compared to that of traditional films of the same thickness made from randomly oriented anatase nanocrystals.  相似文献   

10.
Indirect nanoplasmonic sensing (INPS) is an experimental platform exploiting localized surface plasmon resonance (LSPR) detection of processes in nanomaterials, molecular assemblies, and films at the nanoscale. Here we have for the first time applied INPS to study dye molecule adsorption/impregnation of two types of TiO(2) materials: thick (10 μm) mesoporous films of the kind used as photoanode in dye-sensitized solar cells (DSCs), with particle/pore size in the range of 20 nm, and thin (12-70 nm), dense, and flat films. For the thick-film experiments plasmonic Au nanoparticles were placed at the hidden, internal interface between the sensor surface and the mesoporous TiO(2). This approach provides a unique opportunity to selectively follow dye adsorption locally in the hidden interface region inside the material and inspires a generic and new type of nanoplasmonic hidden interface spectroscopy. The specific DSC measurement revealed a time constant of thousands of seconds before the dye impregnation front (the diffusion front) reaches the hidden interface. In contrast, dye adsorption on the dense, thin TiO(2) films exhibited much faster, Langmuir-like monolayer formation kinetics with saturation on a time scale of order 100 s. This new type of INPS measurement provides a powerful tool to measure and optimize dye impregnation kinetics of DSCs and, from a more general point of view, offers a generic experimental platform to measure adsorption/desorption and diffusion phenomena in solid and mesoporous systems and at internal hidden interfaces.  相似文献   

11.
The photocatalytic splitting of water into hydrogen and oxygen using a photoelectrochemical (PEC) cell containing titanium dioxide (TiO2) photoanode is a potentially renewable source of chemical fuels. However, the size of the band gap (-3.2 eV) of the TiO2 photocatalyst leads to its relatively low photoactivity toward visible light in a PEC cell. The development of materials with smaller band gaps of approximately 2.4 eV is therefore necessary to operate PEC cells efficiently. This study investigates the effect of dopant (C or N) and co-dopant (C+N) on the physical, structural and photoactivity of TiO2 nano thick coating. TiO2 nano-thick coatings were deposited using a closed field DC reactive magnetron sputtering technique, from titanium target in argon plasma with trace addition of oxygen. In order to study the influence of doping such as C, N and C+N inclusions in the TiO2 coatings, trace levels of CO2 or N2 or CO2+N2 gas were introduced into the deposition chamber respectively. The properties of the deposited nano-coatings were determined using Spectroscopic Ellipsometry, SEM, AFM, Optical profilometry, XPS, Raman, X-ray diffraction UV-Vis spectroscopy and tri-electrode potentiostat measurements. Coating growth rate, structure, surface morphology and roughness were found to be significantly influenced by the types and amount of doping. Substitutional type of doping in all doped sample were confirmed by XPS. UV-vis measurement confirmed that doping (especially for C doped sample) facilitate photoactivity of sputtered deposited titania coating toward visible light by reducing bandgap. The photocurrent density (indirect indication of water splitting performance) of the C-doped photoanode was approximately 26% higher in comparison with un-doped photoanode. However, coating doped with nitrogen (N or N+C) does not exhibit good performance in the photoelectrochemical cell due to their higher charge recombination properties.  相似文献   

12.
Bilayer and multilayer thin films are becoming increasingly important in the development of faster, smaller and more efficient electronic and optoelectronic devices. One of the motivations of applying bilayer or multilayer structures is to modify the optical properties of materials. Atomic layer deposition (ALD) is a variant of Chemical Vapour Deposition that can produce uniform and conformal thin films with well controlled nanostructures. In this study, we have demonstrated new findings of the use of ALD fabricated bilayer TiO2/ZnO thin films with enhanced crystallinity and optical properties. TiO2 films have been deposited at 300 degrees C for 1000 (51 nm in thickness) or 3000 (161 nm in thickness) deposition cycles onto glass and Si substrates. ZnO films are subsequently deposited on the TiO2 layers at 280 degrees C for 500 deposition cycles (55 nm). The crystallinity and optical properties of the TiO2/ZnO thin films have been analysed by X-ray diffraction, photoluminescence, UV-Vis spectroscopy, Atomic Force Microscopy and Scanning Electron Microscopy. XRD diffraction pattern confirmed the presence of ZnO with wutrtize crystal structure and TiO2 with anatase structure. It shows that the crystallinity of the TiO2 films has been improved with the deposition of ZnO. The intensity of UV luminescence has increased by almost 30% for TiO2/ZnO bilayer as compared to the single layer TiO2. The possible mechanism for the enhancement of the optical properties of bilayer TiO2/ZnO thin films will be discussed.  相似文献   

13.
利用纳米结构材料作为光阳极制备的染料敏化太阳电池被称为纳米结构染料敏化太阳电池(NDSSC).一般而言,它由纳米结构金属氧化物半导体的光阳极、染料敏化剂,电解质和对电极等几个部分组成.目前,纳米结构光阳极的研究主要集中在如何优化设计和成功制备各种纳米结构的光阳极材料,以改善NDSSC的光电转换性能.本文着重介绍了各种TiO2纳米结构,例如TiO2晶粒薄膜、TiO2准一维纳米结构、TiO2纳米复合物膜层、TiO2核-壳纳米结构、TiO2量子点敏化结构以及串联电池结构等在NDSSC中的应用,并评论了它们最近的主要研究进展.  相似文献   

14.
Photocatalytic TiO(2) deposition by chemical vapor deposition   总被引:6,自引:0,他引:6  
Dip-coating, spray-coating or spin-coating methods for crystalline thin film deposition require post-annealing process at high temperature. Since chemical vapor deposition (CVD) process is capable of depositing high-quality thin films without post-annealing process for crystallization, CVD method was employed for the deposition of TiO(2) films on window glass substrates. Post-annealing at high temperature required for other deposition methods causes sodium ion diffusion into TiO(2) film from window glass, resulting in the degradation of photocatalytic efficiency. Anatase-structured TiO(2) thin films were deposited on window glass by CVD, and the photocatalytic dissociation rates of benzene with CVD-grown TiO(2) under UV exposure were characterized. As the TiO(2) film deposition temperature was increased, the (112)-preferred orientations were observed in the film. The (112)-preferred orientation of TiO(2) thin film resulted in a columnar structure with a larger surface area for benzene dissociation. Obviously, benzene dissociation rate was maximum when the degree of the (112) preferential orientation was maximum. It is clear that the thin film TiO(2) should be controlled to exhibit the preferred orientation for the optimum photocatalytic reaction rate. CVD method is an alternative for the deposition of photocatalytic TiO(2).  相似文献   

15.
Ti和TiO2薄膜在血管支架表面附着状况的研究   总被引:1,自引:0,他引:1  
王志浩  冷永祥  孙鸿  黄楠 《功能材料》2006,37(10):1660-1662
采用非平衡磁控溅射法在316L不锈钢制成的血管支架表面制备Ti以及TiO2薄膜,初步研究了Ti薄膜厚度、TiO2薄膜沉积速率对薄膜在血管支架表面附着状况的影响.结果表明,支架表面较薄的Ti薄膜附着状况较厚的Ti薄膜好;低沉积速率制备的TiO2薄膜在支架表面附着状况好于高沉积速率制备的TiO2薄膜;对于Ti/TiO2复合薄膜,Ti层厚度过大不利于Ti/TiO2复合薄膜在支架表面附着.  相似文献   

16.
(1-x)TiO_2-xTa_2O_5薄膜的光学性能研究   总被引:1,自引:1,他引:0  
TiO2-Ta2O5薄膜是较新颖的光学薄膜,由均匀混合的两种化合物薄膜材料作为膜料研制而成,本文采用离子辅助蒸发的方法,以不同配比的Ta2O5和TiO2混合物为初始膜料在K9玻璃上制备了TiO2-Ta2O5混合薄膜,并对其光学性能进行研究.实验结果表明,TiO2-Ta2O5薄膜在可见光范围内有较高的透射率,消光系数在10-3~10-4数量级,折射率在1.80~2.07范围内变化(550nm),是理想的光学镀膜材料.随着Ta2O5含量从0增加到20%,光学带隙从3.266eV单调增加到3.417eV,并用Kayanuma提出的模型解释了透射谱中吸收边的漂移现象.  相似文献   

17.
The surface roughness of thin films is an important parameter related to the sticking behaviour of surfaces in the manufacturing of microelectomechanical systems (MEMS). In this work, TiO2 films made by atomic layer deposition (ALD) with the TiCl4-H2O process were characterized for their growth, roughness and crystallinity as function of deposition temperature (110-300 degrees C), film thickness (up to approximately 100 nm) and substrate (thermal SiO2, RCA-cleaned Si, Al2O3). TiO2 films got rougher with increasing film thickness and to some extent with increasing deposition temperature. The substrate drastically influenced the crystallization behaviour of the film: for films of about 20 nm thickness, on thermal SiO2 and RCA-cleaned Si, anatase TiO2 crystal diameter was about 40 nm, while on Al2O3 surface the diameter was about a micrometer. The roughness could be controlled from 0.2 nm up to several nanometers, which makes the TiO2 films candidates for adhesion engineering in MEMS.  相似文献   

18.
TiO2 nanotube arrays decorated with alpha-Fe2O3 were prepared by forming a nanotube-like TiO2 film on a Ti sheet using an anodization process, followed by electrochemical deposition to decorate hematite (alpha-Fe2O3) nanoparticles on the TiO2 nanotube arrays. The SEM and XRD results revealed that the alpha-Fe2O3 nanoparticles were homogeneously embedded on the surface of the TiO2 nanotube arrays. The photoelectrochemical properties of the alpha-Fe2O3/TiO2 nanotube arrays as photoanode were studied by photocurrent-potential behavior in 1 M NaOH electrolyte under 100 mW/cm2 UV-Visible light irradiation. Also, the length dependence of TiO2 nanotubes and the amount dependence of alpha-Fe2O3 nanoparticles on the photocatalytic ability were studied and thus the optimum conditions were determined.  相似文献   

19.
In this paper, a Ba0.6Sr0.4TiO3 (BST) tunable phase shifter with TiO2 films as microwave buffer layer between BST and silicon (Si) substrates is presented. The TiO2 buffer layer is grown by atomic layer deposition (ALD) onto Si substrate followed by pulsed laser deposition (PLD) of BST thin films onto the TiO2 buffer layer. The phase shifter fabricated on BST films grown on TiO2/Si substrate shows a good figure of merit (FOM) of 75.4 degrees/dB by exhibiting improved tunablity while retaining an appropriate dielectric Q as compared to 55.1 degrees/dB of BST/MgO structure. The TiO2 buffer layer grown by ALD enables successful integration of BST-based microwave tunable devices with high resistive Si wafer.  相似文献   

20.
采用中频反应磁控溅射孪生靶在玻璃基体上沉积TiO2薄膜。沉积过程中采用多路送气和等离子体发射光谱监测控制系统,使整个反应溅射过程维持在过渡区,从而快速稳定获得均匀高质量的TiO2薄膜,沉积速度在50 nm/min以上。随着SP值的增加,沉积速率的增加呈线性关系。通过比较不同SP值制备的TiO2薄膜的光谱图发现,快速稳定地沉积TiO2薄膜的SP值大致在2.5~3.8范围内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号