首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-ground Phlogopite micas were classified into narrow particle-size distributions containing flakes with well-defined diameters and thicknesses in order to evaluate the influence of particle size and flake aspect ratio on the mechanical properties of mica-filled polypropylenes, For the purposes of comparison, most of the injection-molded specimens contained 40 percent (by weight) mica. As expected, the flexural and tensile modulus values increased in proportion to the aspect ratio over the range from 30 to 60 to a maximum of 8 GPa. The measured tensile strengths of the mica-filled polypropylenes increased substantially as the flake diameter became smaller, but did not correlate with the flake aspect ratio. The attainable properties were frequently dependent upon the method of mixing, and considerable care was necessary to ensure proper dispersion and adequate coupling. Intensive mixing, as in a Gelimat Mixer, may cause in situ delamination and particle-size reduction of the mica filler particles, leading to a marked increase in tensile strength of the resulting composite. The mica-filled compounds could be reprocessed many times without significant loss of properties, particularly compounds having mica particles less than 40 μm in diameter. The fracture energies (notched Izod) and the heat-distortion temperatures were not appreciably influenced by the size or aspect ratios of the mica within this range. Increased fracture toughness could be achieved by reducing the mica concentration or employing a polypropylene copolymer. Guidelines are presented to indicate the preferred characteristics of mica fillers and the influence of mixing conditions on performance.  相似文献   

2.
The present study was carried out to determine the filler characteristics and to investigate the effects of three types of mineral fillers (CaCO3, silica, and mica) and filler loadings (10–40 wt%) on the properties of polypropylene (PP) composites. The characteristics of the particulate fillers, such as mean particle size, particle size distribution, aspect ratio, shape, and degree of crystallinity were identified. In terms of mechanical properties, for all of the filled PP composites, Young's modulus increased, whereas tensile strength and strain at break decreased as the filler loading increased. However, 10 wt% of mica in a PP composite showed a tensile strength comparable with that of unfilled PP. Greater tensile strength of mica/PP composites compared to that of the other composites was observed because of lower percentages of voids and a higher aspect ratio of the filler. Mica/PP also exhibited a lower coefficient of thermal expansion (CTE) compared to that of the other composites. This difference was due to a lower degree of crystallinity of the filler and the CTE value of the mica filler. Scanning electron microscopy was used to examine the structure of fracture surfaces, and there was a gradual change in tensile fracture behavior from ductile to brittle as the filler loading increased. The nucleating ability of the fillers was studied with differential scanning calorimetry, and a drop in crystallinity of the composites was observed with the addition of mineral filler. Studies on the hybridization effect of different (silica and mica) filler ratios on the properties of PP hybrid composites showed that the addition of mica to silica‐PP composites enhanced their tensile strength and modulus. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

3.
A potential application for conductive resins is in bipolar plates for use in fuel cells. The addition of carbon filler can increase the electrical and thermal conductivities of the polymer matrix but will also have an effect on the tensile and flexural properties, important for bipolar plates. In this research, three different types of carbon (carbon black, synthetic graphite, and carbon nanotubes) were added to polypropylene and the effects of these single fillers on the flexural and tensile properties were measured. All three carbon fillers caused an increase in the tensile and flexural modulus of the composite. The ultimate tensile and flexural strengths decreased with the addition of carbon black and synthetic graphite, but increased for carbon nanotubes/polypropylene composites due to the difference in the aspect ratio of this filler compared to carbon black and synthetic graphite. Finally, it was found that the Nielsen model gave the best prediction of the tensile modulus for the polypropylene based composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
The rheological and mechanical properties of a high density polyethylene (HDPE) filled with surface-treated mica flakes are reported. Young's modulus decreases with different treatments, whereas break elongation and maximum strength slightly increase. Young's modulus increases with the addi ion of mica flakes, but the decrease in elongation is also quite significant. For 20% mica composites, hardly any change was observed in the properties. The high shear viscosity does not show any significant effect as a result of the surface treatment. Viscosity of composites increases with silane treatment and decreases with titanate treatment. It is suggested that the coupling agent, depending on its chemical structure and nature of the filler, may act as an adhesion promoter or as a lubricating agent.  相似文献   

5.
将云母填充聚丙烯(PP)进行光老化前后的力学性能比较,并采用紫外-可见光分光光度计、扫描电子显微镜等对云母及复合材料进行研究.实验表明:具有高径厚比的云母容易在塑料流体流动过程中沿着流动方向并行取向,取向后的云母不仅有利于提高PP材料的力学性能,而且云母对紫外光具有层间反射、干涉和遮蔽等效应,同时降低云母粒径,提高径厚比可有效提高改性PP的力学性能和抗紫外光老化性能.  相似文献   

6.
Conductive fillers are often added to thermoplastic polymers to increase the resulting composite's electrical conductivity (EC) which would enable them to be used in electrostatic dissipative and semiconductive applications. The resulting composite also exhibits increased tensile modulus. The filler aspect ratio plays an important role in modeling composite EC, and tensile modulus. It is difficult to measure the filler aspect ratio after the manufacturing process (often extrusion followed by injection molding) in the composite, especially when nanomaterials are used. The EC percolation threshold is a function of the filler aspect ratio; hence, knowledge of this percolation threshold provides a means to extract the filler aspect ratio. In this study, the percolation threshold of the composite was determined from EC measurements and modeling, which in turn was used to determine the filler aspect ratio for tensile modulus modeling. Per the authors' knowledge, this approach has not been previously reported in the open literature. The fillers; carbon black (CB: 2–10 wt %), multiwalled carbon nanotubes (CNT: 0.5–8 wt %), or exfoliated graphite nanoplatelets (GNP: 2–12 wt %); were added to polycarbonate (PC) and the resulting composites were tested for EC and tensile modulus. With the filler aspect ratio determined from EC values for CNT/PC and GNP/PC composites, the three‐dimensional randomly oriented fiber Halpin‐Tsai model accurately estimates the tensile modulus for the CNT/PC composites and the Nielsen model predicts the tensile modulus well for the CB/PC and GNP/PC composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Mechanical and Theological properties of a high density polyethylene (HDPE) filled with mica flakes, rutile and carbon black are investigated. Experimental results show that the Young modulus and the tensile strength of mica and rutile-HDPE composites are significantly enhanced by surface treatment of fillers with silane and titanate coupling agents. Surface treatments are shown to reduce the peak of the loss tangent (tan δ) and slightly increase the glass transition temperature (Tg). This is an indication of improved adhesion at the filler-matrix interface. The carbon black composites, however, hardly show any improvement by these treatments. The Theological properties are also effected by surface treatments, particularly at low shear rates. The low-shear rate viscosities (η O) and characteristic time (λ 0) of these systems are determined and compared. It is found that η 0 and λ 0 of carbon black composites are much higher than those of mica composites. This is probably due to the poor dispersion and/or agglomerates formation of the carbon black in the HDPE matrix. It is also suggested that the coupling agent, depending on its chemical structure and nature of the filler, may act as an adhesion promoter or as a lubricating agent.  相似文献   

8.
Hybrid composites based on poly(ether‐ether‐ketone) (PEEK) were fabricated with fly ash and mica. Nearly 5, 10, and 15 wt% of fly ash were replaced by mica of the optimized fly ash reinforced composites and were subjected to dynamical mechanical analysis to determine the dynamic properties as a function of temperature. The storage modulus E′ was found to decrease with the increase of weight fraction of mica. Loss modulus was also found to decrease with loading while the damping property was found to increase marginally. Peak height of tan δ for hybrid composites were decreased by varying combinations of fly ash with mica. It is probably due to improved crystallinity of PEEK and strong interaction between the fillers and PEEK matrix. Cole–Cole analysis was made to understand the phase behavior of the composite samples. Kubat parameter was calculated to study the adhesion between matrix and filler of the fabricated composites. Without surface modification for inorganic fillers, the distribution of two different shape filler particles appears to be reasonably uniform. The use and limitation of various theoretical equations to predict the tan δ and storage modulus of filler reinforced composites have been discussed. Addition of both fillers opens up new opportunities for development of high‐performance multifunctional materials suitable for industrial applications. Scanning electron micrographs of tensile fracture surfaces of composites demonstrated filler–matrix bonding. POLYM. COMPOS., 35:68–78, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
The effects of different types of fillers and filler loadings on the properties of carboxylated nitrile rubber (XNBR) latex were identified. Silica, mica, carbon black (CB; N330), and calcium carbonate (CaCO3) were used as fillers with filler loadings of 10, 15, and 20 parts per hundred rubber. Furnace ashing and Fourier transform infrared analysis proved that interaction existed between the fillers and XNBR latex films. The morphology of the filled XNBR films was significantly different for different types of fillers. Mica and CaCO3 fillers showed uneven distribution within the XNBR film, whereas other fillers, such as silica and CB, showed homogeneous distribution within the films. In the observation, silica and mica fillers also illustrated some degree of agglomeration. The mechanical properties (e.g., tensile and tear strengths) showed different trends with different types of fillers used. For silica and mica fillers, the mechanical properties increased with filler loadings up to a certain loading, and decreased with higher filler loadings. For CB filler, the mechanical properties increased gradually with increasing filler loadings. CaCO3 fillers did not increase the mechanical properties. The crosslinking density of the XNBR films increased when they were incorporated with fillers because of the presence of elastomer–filler and filler–filler interactions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
In this study, morphology, and dynamic and mechanical properties of polypropylene–mica (PP–Mica) composites were investigated. To enhance the adhesion between PP and mica, maleic anhydride‐grafted PP (MAPP) and treated mica with silane coupling agent were used. MAPP (as a compatibilizer) and silane coupling agent (as a filler surface modifier) caused an interfacial bonding in the mica filled polypropylene composites. The effect of mica content, MAPP, and treated mica with silane coupling agent on the morphological properties were investigated by Scanning Electron Microscopy (SEM). The results showed that with increasing MAPP or silane coupling agent, dispersion of filler and adhesion between PP and filler were improved. Mechanical data showed that with increasing MAPP and mica treated with silane coupling agent, tensile modulus and flextural strength of composites were enhanced. Dynamic rheological behavior of composites was also investigated within the domain of linear viscoelasticity. The rheological observations indicated that the complex viscosity, storage and loss moduli increased, and tan δ decreased with increasing mica content. POLYM. COMPOS. 27:491–496, 2006. © 2006 Society of Plastics Engineers.  相似文献   

11.
The present study was carried out to evaluate the performance of nickel-coated graphite (NCG) in comparison with graphite as conductive fillers in polypropylene (PP) matrix. Graphite exhibits smaller particle size and higher aspect ratio (length/thickness) than NCG particles. The results showed that the additions of graphite filler in PP exhibits higher tensile properties and electrical conductivity compared to NCG filled PP composites. The electrical results showed that the percolation threshold of graphite and NCG filled PP composites occurred in the range of 10 to 20 vol.% and 15 to 25 vol.%, respectively.  相似文献   

12.
The effect of the size of mica platelets used, at 30% by mass, to reinforce polypropylene was studied by comparing ultrasonically delaminated mica (diameter 5μ aspect ratio about 40) with a coarser mica (150–420μ) with and without the coupling agent 3-(triethoxysilyl)-1-propanamine (Union Carbide A-1100). Reducing the particle size of the mica (treated with coupling agent) significantly increased the tensile modulus and strength but did not affect elongation at break; it gave a small improvement in Izod impact strength; the heat distortion temperature was lower and the melt flow index was increased. Dynamic mechanical evaluation (Rheovibron) was done with a series of coarse micas (>44μ, 45–150μ, 150–250μ, and one with a broad distribution around 100μ), and an ultrasonically delaminated mica made in a continuous process (>20μ), all treated with N-(4-vinylphenyl) methyl-N′-(3-trimethoxysilylpropyl)ethylenediamine (Dow Corning Z-6032), at 20% by mass in polypropylene. Except for the disappearance of a peak at 0°C in the loss tangent due to the glass transition, the composite with delaminated mica did not differ from pure polypropylene, melting at 175°C. Use of the coarser micas raised the melting temperature to 200°C, increased the storage modulus, and lowered the loss tangent in the case of the three fractionated samples. The results were concordant with theories of reinforcement and microheology. The hoped-for improvement in some properties on changing to the finer mica may not have been realized because of incomplete dispersion.  相似文献   

13.
Dynamic modulus of elasticity (MoE) and shear modulus of wood‐filled polypropylene composite at various filler contents ranging from 10% to 50% was determined from the vibration frequencies of disc‐shaped specimens. Wood filler was used in both fiber form (pulp) and powder form (wood flour). A novel compatibilizer, m‐isopropenyl‐α,α‐dimethylbenzyl‐isocyanate(m‐TMI) grafted polypropylene with isocyanate functional group was used to prepare the composites. A linear increase in dynamic MoE, shear modulus, and density of the composite was observed with the increasing filler content. Between the two fillers, wood fiber filled composites exhibited slightly better properties. At 50% filler loading, dynamic MoE of the wood fiber filled composite was 97% higher than that of unfilled polypropylene. Halpin‐Tsai model equation was used to describe the changes in the composite modulus with the increasing filler content. The continuous improvement in elastic properties of the composites with the increasing wood filler is attributed to the effective reinforcement of low‐modulus polypropylene matrix with the high‐modulus wood filler. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1706–1711, 2006  相似文献   

14.
Dynamic mechanical properties of cured epoxy resin filled with mica flake, as two-dimensional filler, were investigated over the temperature range from room temperature to 200°C. Two series of composite specimens were examined. One is series RM, containing ill-oriented mica flakes, and another is RMB, containing mica flakes oriented in the direction parallel to the specimen surface. Both tensile and shear moduli for RMB series were determined by dynamic mechanical experiments. The tensile modulus for RMB series was always higher than that for RM series over the whole temperature range. The shear modulus for RMB series was low, compared with that of the tensile modulus in the rubbery state. The behavior of the modulus reinforcement, observed both in the glassy and rubbery states, was compared with recently proposed theories of Wu and Padawer and Beecher. In the glassy state, the tensile modulus of RM series follows Wu's theory, while that of the RMB series agrees with Padawer and Beecher's theory. In the rubbery state, the tensile modulus of each series cannot be well explained by either theory. It was proposed that the tensile stress applied to the specimen was converted to shear stress in a thin resinous layer sandwiched by two mica flakes. The modulus behavior of the RMB series can be fully explained by this model.  相似文献   

15.
The tensile behavior of polypropylene (PP) filled with calcium carbonate particles has been studied using a tensile test. In particular, the effect of strain rate, filler content, and filler size upon the elastic modulus, yield stress, and strain of surface-modified and unmodified particles-filled PP were investigated. The results indicated that the elastic modulus and yield stress of an unmodified system were increased with an increase of strain rate and filler content, and with a decrease of filler size. The yield strain was decreased with an increase of filler content, and with a decrease of filler size, but did not depend on the strain rate. Although the dependence of elastic modulus on the filler size was maintained even by the surface-modified fillers, that dependence on the strain rate and filler content was decreased by such fillers. This may be because the modifier is present at the interface of filler and polymer matrix.  相似文献   

16.
For polymer composites that find application as sheet-molding compounds (SMCs), the fiber aspect ratio l/d and the size ratio R (the ratio of the diameter of the spherical filler and the diameter of the fiber) are important parameters. A study of various composite formulations of different combinations of l/d and R has been made to examine the correlation between the packing efficiency of these fibers and fillers in air, and the properties of resulting composites. Samples containing a total of 32 wt% fibers and spherical fillers (in 1:3 proportion) were tested. The tensile modulus was seen to represent behavior similar to packing efficiency. Sources of experimental errors are discussed.  相似文献   

17.
Nanocomposites based on natural rubber latex as the matrix and naturally occurring tubular shaped nanoclay, halloysite nanotubes (HNTs) as the reinforcing phase were prepared through co‐coagulation method. XRD, morphology, mechanical, and solvent transport properties of the nanocomposites with special reference to weight percentage of nanoclay were analyzed and discussed in detail. Matrix–filler interaction was estimated from Kraus, Cunneen–Russell, and Lorentz–Park plots. Theoretical estimation of reinforcement effect revealed a better interaction between rubber and filler at lower concentration of filler. At higher loading properties decreased due to the formation of filler–filler networks than polymer–filler networks resulting in the reduction of aspect ratio of fillers. Properties of nanocomposites depend on the aspect ratio and volume fraction of reinforcing filler. Morphological analyses of the nanocomposites were done in detail from scanning electron micrographs. Theoretical modulus of nanocomposites was computed using different composite theories by varying the aspect ratio of filler and compared with experimental data. A good agreement between experimental and theoretical values was observed at lower concentration of filler. Solvent transport properties of nanocomposites were found to decrease at lower concentration of HNT because of the tortuosity of the path. POLYM. COMPOS., 37:602–611, 2016. © 2014 Society of Plastics Engineers  相似文献   

18.
The adhesion between the polymer matrix and the inorganic filler particles are the goal of various and tremendous studies. This issue is still occupying a big part of the researchers thinking to find a proper solution, however, its difficulty returns to different factors playing roles in it. Among these factors are the filler surface, i.e., hydrophobicity and hydrophilicity, functional groups on the surface, as well as mineral filler particle size distribution, and particle shape. Therefore, in the current study, the difference in mechanical properties for two mineral fillers; namely, silica and talc, differs in their surface and rheology properties were investigated. Results showed that the difference in the mechanical properties of the same matrix when the inorganic filler is different either in type or loading. Talc showed the better results in terms of Young’s modulus and impact strength, where silica showed higher values in terms of yield stress. Moreover, both minerals addition resulted drop in all strain measures, yet silica showed relatively higher measures than talc, but the relative difference measures between the two minerals decrease with increasing their percentage of additions. In brief, the introduction of inorganic fillers to polypropylene (PP) increases toughness, stiffness and strength of the mineral-filled PP end-products.  相似文献   

19.
A semirigid and amorphous commercial liquid‐crystalline copolyester (Rodrun) was filled with mica and calcium carbonate (up to 25 wt %) by direct injection molding. The fillers led to decreases in the processability, as observed by torque increases, but maintained the thermal resistance of Rodrun. The effects of the two fillers on the modulus of elasticity, ductility, and tensile strength were the same or very similar. The decrease in the tensile strength (20% for a 10% filler content) was compensated by a generally slight increase in the modulus of elasticity, whatever the filler content was. This balance of properties found in these new liquid‐crystalline‐polymer‐based materials and the important savings that the fillers bring may spread the applications of these materials' matrices. © 2003 Wley Periodicals, Inc. J Appl Polym Sci 88: 998–1003, 2003  相似文献   

20.
The development of effective methods to utilize industrial and agricultural wastes is crucial from the perspective of a circular economy. Marble powder and olive pomace (OP), byproducts of olive oil production and marble processing, are considered one of the major sources causing severe environmental pollution, especially in Mediterranean countries. Herein, marble powder and OP are aimed to use as fillers in polypropylene (PP)-based polymer composite. In addition, fractionated OP is further fibrillated by a combination of mechanical grinding and ionic liquid treatment to enhance its performance as a reinforcement. After treatment for 24 h, the particle size decreases from about 2.1 to 1.1 µm, and the lignocellulosic composition also varies due to the partial removal of hemicellulose. Finally, the compounding ratio of polymer composites consisting of PP, marble powder, fibrillated OP, and compatibilizer is optimized using response surface methodology (RSM) to achieve both high mechanical properties and high filler contents. Mechanical properties of polymer composite fabricated with optimum ratio are in excellent agreement with those predicted by RSM. Furthermore, the yield strength and Young's modulus of polymer composite are 33.9 MPa and 1.89 GPa, accordingly, which are higher than those of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号