首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sol-gel process was adopted to prepare BiFeO3 films. BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 °C, respectively. The X-ray diffraction results reveal that BiFeO3 film has a rhombohedrally distorted perovskite structure with space group R3c. The film annealed at 500 °C has larger remnant polarization (P r) of 35.3 μC/cm2. For the film annealed at 550 °C, smaller remnant polarization of P r=4.8 μC/cm2 is observed for its low breakdown electric field. Lower leakage conduction is observed in the film annealed at 500 °C at low applied field.  相似文献   

2.
The effect of annealing on microstructure, adhesive and frictional properties of GeSb2Te4 films were experimentally studied. The GeSb2Te4 films were prepared by radio frequency (RF) magnetron sputtering, and annealed at 200℃ and 340℃ under vacuum circumstance, respectively. The adhesion and friction experiments were mainly conducted with a lateral force microscope (LFM) for the GeSb2Te4 thin films before and after annealing. Their morphology and phase structure were analyzed by using atomic force microscopy (AFM) and X-ray Diffraction (XRD) techniques, and the nanoindention was employed to evaluate their hardness values. Moreover, an electric force microscope (EFM) was used to measure the surface potential. It is found that the deposited GeSb2Te4 thin film undergoes an amorphous-to-fcc and fcc-to-hex structure transition; the adhesion has a weaker dependence on the surface roughness, but a certain correlation with the surface potential of GeSb2Te4 thin films. And the friction behavior of GeSb2Te4 thin films follows their adhesion behavior under a lower applied load. However, such a relation is replaced by the mechanical behavior when the load is relatively higher. Moreover, the GeSb2Te4 thin film annealed at 340℃ presents a lubricative property.  相似文献   

3.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.  相似文献   

4.
The PZT thin films were prepared on (111)- Pt/Ti/SiO2/Si substrates by sol-gel method, and lead acetate [Pb(CH3COO)2], zirconium nitrate [Zr(NO3)4] were used as raw materials. The X-ray diffractometer (XRD) and scanning electron microscopy (SEM) were used to characterize the phase structure and surface morphology of the films annealed at 650 ℃ but with different holding time. Ferroelectric and dielectric properties of the films were measured by the ferroelectric tester and the precision impedance analyzer, respectively. The PZT thin films were constructed with epoxy resin as a composite structure, and the damping properties of the composite were tested by dynamic mechanical analyzer (DMA). The results show that the films annealed for 90 minutes present a dense and compact crystal arrangement on the surface; moreover, the films also achieve their best electric quality. At the same time, the largest damping loss factor of the composite constructed with the 90 mins-annealed film shows peak value of 0.9, higher than the pure epoxy resin.  相似文献   

5.
Bi3.25La0.75Ti3O12(BLT) thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method. The effect of annealing on their structures and ferroelectric properties was investigated. The XRD patterns indicate that the BLT films annealed at different temperatures are randomly orientated and the single perovskite phase is obtained at 550°C. The remnant polarization increases and the coercive field decreases with the annealing temperature increasing. The leakage current density of the BLT films annealed at 700°C is about 5.8×10−8 Al cm2 at the electric field of 250 kV/cm. Funded by the National Natural Science Foundation of China (No. 90407023)  相似文献   

6.
The TiO2 films were prepared on slides by dc reactive magnetron sputtering, then the samples were annealed at 300°C, 350°C, 400°C, 450°C, 500°C and 550°C, respectively. X-ray diffraction (XRD) was used to obtain the TiO2 film crystalline structure; X-ray photoelectron spectroscopy (XPS) was used to study the film surface stoichiometries; surface morphologies were studied by scanning electron microscopy (SEM); the contact angle was tested to indicate the TiO2 film wettability; and the photocatalytic activity testing was conducted to evaluate the photocatalysis properties. The photocatalytic activity and contact angle testing results were correlated with the crystallinity, surface morphologies and surface ·OH concentration of TiO2 films. The samples with a higher polycrystalline anatase structure, rough surface and high ·OH concentration displayed a better photoinduced hydrophilicity and a stronger photocatalysis. Funded by the National “863” Project Foundation (No. 2003LG0034)  相似文献   

7.
The effect of the annealing temperature T a on the optical, electrical and structural properties of the In2S3 films obtained by the spray pyrolysis method at 350°C substrate temperature was studied. All the In2S3 films annealed in the range from 100 to 400°C are polycrystalline with (220) preferential orientation. The resistivity decreases as T a increases until it reaches a value of 25 Ohm-cm for T a=400°C. The grain size also increases when T a increases as observed in data calculated from X-ray measurements. XRD data indicates that samples show microstructural perfection improvement as a function of annealing temperature.  相似文献   

8.
1 IntroductionMetalchalcogenidesemiconductorsofⅡ Ⅵcom poundshavethezinc blendandwurzitestructure ,theyhavewideenergygaps (1 .7 1 3.4eV)asadirectshifttype .Hencepeopleareofgreatinterestintheapplicationofthesecompoundsinvariousoptoelectronicsdevicesand…  相似文献   

9.
SrBi2.2 Ta2O9 (SBT) thin film with thickness of 2 μm was successfully prepared by sol-gel method, using strontium acetate semihydrate [Sr(CH3 COO)2 · 1/2H2O] and bismth subnitrate [BiO(NO3)], and tantalum ethoxide [Ta(OCH2CH3)5] as source materials, glacial acetic and ethylene glycol as solvents. The X-ray diffraction (XRD) and transmission electron microscope(TEM) results indicate that SBT layer-perovskite phase obtained has to be single phase, SBT thin film is formed after being annealed at 800 °C for for 1 min. The typical hysteresis loop of SBT thin film on Pt/Ti/SiO2/Si is obtained, and the measured polarization value of the SBT thin film is 4. 2 μ/C/cm2. Foundation item: Project (HIT. 2001. 67) supported by the Scientific Research Foundation of Harbin Institute of Technology; project (50172012) supported by the National Natural Science Foundation of China  相似文献   

10.
Chrome-doped titanium oxide films were prepared by reactive magnetron sputtering method. The films deposited on glass slides at room temperature were investigated by atom force microscope, X-ray diffractometer, X-ray photoelectron spectroscopy, UV-Vis spectrophotometer, the photoluminescence (PL) and ellipse polarization apparatus. The results indicate that TiO2-Cr film exists in the form of amorphous. The prepared films possess a band gap of less than 3.20 eV, and a new absorption peak. The films, irradiated for 5 h under UV light, exhibit excellent photocatalytic activities with the optimum decomposition rate at 98.5% for methylene blue. Consequently, the thickness threshold on these films is 114 nm, at which the rate of photodegradation is 95% in 5 h. When the thickness is over 114 nm, the rate of photodegradation becomes stable. This result is completely different from that of crystalloid TiO2 thin film.  相似文献   

11.
The Cu x Si1-x thin films have been grown by pulsed laser deposition (PLD) with in situ annealing on Si (001) and Si (111), respectively. The transformation of phase was detected by X-ray diffraction (XRD). The results showed that the as-deposited films were composed of Cu on both Si (001) and Si (111). The annealed thin films consisted of Cu + η”-Cu3Si on Si (001) while Cu + η’-Cu3Si on Si (111), respectively, at annealed temperature (T a) = 300-600 °C. With the further increasing of T a, at T a= 700 °C, there was only one main phase, η”-Cu3Si on Si (001) while η’-Cu3Si on Si (111), respectively. The annealed thin films transformed from continuous dense structure to scattered-grain morphology with increasing T a detected by field emission scanning electron microscope (FESEM). It was also showed that the grain size would enlarge with increasing annealing time (t a).  相似文献   

12.
The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed. The derived VO2 thin film samples were characterized by Raman, XRD, XPS, AFM, SEM, and DSC. The resistance and infrared emissivity of VO2 thin films under different temperature were measured, and the thermal images of films were obtained using infrared imager. The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform. The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film. The resistance of 900 nm VO2 film can change by 4 orders of magnitude and the emissivity can change by 0.6 during the phase transition, suggesting the outstanding IR thermochromic property. The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases, which may be applied in the field of energy saving, thermal control and camouflage.  相似文献   

13.
Aiming at developing novel microwave-transparent ceramics with low dielectric loss,high thermal conductivity and high strength,Si3N4-AlN(30%,mass fraction) composite ceramics with La2O3 as sintering additive were prepared by hot-pressing at 1 800 °C and subsequently annealed at 1 450 °C and 1 850 °C for 2 h and 4 h,respectively.The materials were characterized by XRD and SEM.The effect of annealing process on the phase composition,sintering performance,microstructure,bending strength,dielectric loss and the...  相似文献   

14.
Highly conductive IrO2 thin films were prepared on Si (100) substrates by means of pulsed laser deposition technique from an iridium metal target in an oxygen ambient atmosphere. Emphasis was put on the effect of oxygen pressure and substrate temperature on the structure, morphology and resistivity of IrO2 films. It was found that the above properties were strongly dependent on the oxygen pressure and substrate temperature. At 20 Pa oxygen ambient pressure, pure polycrystalline IrO2 thin films were obtained at substrate temperature in the 300-500℃ range with the preferential growth orientation of IrO2 films changed with the substrate temperature. IrO2 films exhibited a uniform and densely packed granular morphology with an average feature size increasing with the substrate temperature. The room-temperature resistivity variations of IrO2 films correlated well with the corresponding film morphology changes. IrO2 films with the minimum resistivity of (42 ±6)μΩ·cm was obtained at 500℃.  相似文献   

15.
Al_xO_y films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed films to simulate the high-temperature application environment.Effects of the annealing heating rate on structure and properties of both 500 ℃-annealed and 900 ℃-heated films were investigated systematically.It was found that distinct γ-Al_2O_3 crystallization was observed in the 900 ℃-heated films only when the annealing heating rates are 15 and 25 ℃/min.The 500 ℃-annealed film possessed the most compact surface morphology in the case of 25 ℃/min.The highest microhardness of both 500 ℃-annealed and 900℃-heated films were obtained when the annealing heating rate was 15 ℃/min.  相似文献   

16.
In order to improve the electrochemical hydrogen storage performance of the Mg2Ni-type electrode alloys, Mg in the alloy was partially substituted by La, and the nanocrystalline and amorphous Mg2Ni-type Mg20−x La x Ni10 (x=0, 2) alloys were synthesized by melt-spinning technique. The microstructures of the as-spun alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical hydrogen storage properties of the experimental alloys were tested. The results show that no amorphous phase is detected in the as-spun Mg20Ni10 alloy, but the as-spun Mg18La2Ni10 alloy holds a major amorphous phase. As La content increases from 0 to 2, the maximum discharge capacity of the as-spun (20 m/s) alloys rises from 96.5 to 387.1 mA·h/g, and the capacity retaining rate (S 20) at the 20th cycle grows from 31.3% to 71.7%. Melt-spinning engenders an impactful effect on the electrochemical hydrogen storage performances of the alloys. With the increase in the spinning rate from 0 to 30 m/s, the maximum discharge capacity increases from 30.3 to 135.5 mA·h/g for the Mg20Ni10 alloy, and from 197.2 to 406.5 mA·h/g for the Mg18La2Ni10 alloy. The capacity retaining rate (S 20) of the Mg20Ni10 alloy at the 20th cycle slightly falls from 36.7% to 27.1%, but it markedly mounts up from 37.3% to 78.3% for the Mg18La2Ni10 alloy.  相似文献   

17.
In this paper, uniform titania (TiO2) films have been formed at 50° on silanol SAMs by the liquid-phase deposition (LPD) method at a temperature below 100°C. OTS (Octadecyltrichloro-Silane) self-assembled monolayers (SAMs) on glass wafers were used as substrates for the deposition of titanium dioxide thin films. This functionalized organic surface has shown to be effective for promoting the growth of films from titanic aqueous solutions by the LPD method at a low temperature below 100°C. The crystal phase composition, microstructure and topography of the as-prepared films were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The results indicate that the as-prepared thin films are purely crystallized anatase TiO2 constituted by nanorods after being annealed at 500°. The pH values, concentration of reactants, and deposition temperatures play important roles in the growth of TiO2 thin films. Support by the National Natural Science Foundation of China (Grant No. 50672055) and National Key Technology R&D Program (Grant No. 2006BAF02A28)  相似文献   

18.
(ZrO2) x (SiO2)1−x (Zr-Si-O) films with different compositions were deposited on p-Si(100) substrates by using pulsed laser deposition technique. X-ray photoelectron spectra (XPS) showed that these films remained amorphous after annealing at 800°C with RTA process in N2 for 60 s. The XPS spectra indicated that Zr-Si-O films with x=0.5 suffered no obvious phase separation after annealing at 800°C, and no interface layer was formed between Zr-Si-O film and Si substrate. While Zr-Si-O films with x >0.5 suffered phase separation to precipitate ZrO2 after annealing under the same condition, and SiO2 was formed at the interface. To get a good interface between Zr-Si-O films and Si substrate, Zr-Si-O films with bi-layer structure (ZrO2)0.7(SiO2)0.3/(ZrO2)0.5(SiO2)0.5/Si was deposited. The electrical properties showed that the bi-layer Zr-Si-O film is of the lowest equivalent oxide thickness and good interface with Si substrate. Supported by the National Nature Science Foundation of China (Grant No. 60636010) and the National Basic Research Program of China (“973” Program) (Grant No. 2004CB619004)  相似文献   

19.
In order to study the effect of intermaetallics on the corrosion behaviour of 7A52 aluminum alloy,the alloy was characterized by means of SEM-EDS and scanning Kelvin probe force microscopy(SKPFM).The experimental results indicate that there are two different intermetallics:Al-Mn-Fe and Mg2Si.Both intermetallics exhibite the negative volta potential relative to the matrix indicating an anodic behaviour.Hereby,they are easy to be dissolved and corroded under the erosive environment,and there become the corrosion initiation sites.The Al-Mn-Fe intermetallics show stronger anodic behaviour than those of Mg2Si intermetalics.It means that Al-Mn-Fe intermetalics are easier to be corroded.  相似文献   

20.
采用磁控溅射工艺在Si基片上沉积500 nm厚Cu膜,并在不同温度下进行快速退火处理。用X射线衍射仪、扫描电镜、光学相移方法研究薄膜的微结构与应力。结果表明:随着退火温度T增加,Cu(111)择优取向系数δCu(111)不断减小,薄膜的Cu(111)/Cu(200)取向组成比值减小;在T=773K条件下退火的薄膜形成了显著的空洞与裂纹;当T在小于673 K范围内增加时,薄膜应力由拉应力不断减小继而转变为压应力,而当T=773 K时,薄膜又呈现出较大的拉应力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号