首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 319 毫秒
1.
The present review paper highlights on the recent progress in Japan on the hot gas cleanup of HCl, H2S and NH3 in raw fuel gas for coal-based, combined cycle power generation technologies. It has been shown that NaAlO2, prepared by mixing Na2CO3 solution with Al2O3 sol, can reduce HCl in an air-blown gasification gas from the initial 200 ppm to < 1 ppm at 400 °C, and it is tolerable for 200 ppm H2S. With regard to the removal of H2S, studies on the stability and durability of ZnFe2O4 sorbent in a simulated fuel gas have indicated the presence of an optimal operation temperature from the viewpoint of the suppression of both vaporization of metallic Zn and carbon formation from CO. High-performance TiO2-supported ZnFe2O4, which can decrease 1000 ppm H2S to < 1 ppm at 450 °C and 1 MPa, has been developed by the homogeneous precipitation method using a mixture of SiO2 sol and an aqueous solution of Zn and Fe nitrates, followed by mixing with TiO2. Although this sorbent is regenerable and durable, the sorption ability should be improved in a syngas-rich fuel gas from an O2-blown gasifier. A novel method to prepare carbon-supported ZnFe2O4 and CaFe2O4 by impregnating the corresponding nitrate solution with brown coal has been proposed, and the large desulfurization capacity of almost 100% has been achieved in the removal of 4000 ppm H2S around 450 °C. The present authors have demonstrated that an Australian limonite rich in α-FeOOH is practically feasible as the catalyst material for the decomposition of 2000 ppm NH3 in a syngas-rich gas of 25 vol.% H2/50 vol.% CO at 750 °C, because small amounts of H2O and CO2 added to the gas can work efficiently for inhibiting carbon deposition from the CO.  相似文献   

2.
Xijie Chu  Baoqing Li  Haokan Chen 《Fuel》2008,87(2):211-215
The sulfur transformation during pyrolysis and gasification of Shenhua direct liquefaction residue was studied and the release of H2S and COS during the process was examined. For comparison, the sulfur transfer of Shenhua coal during pyrolysis and that of pyrolyzed char during gasification were also studied. The residue was pyrolyzed at 10 °C /min to 950 °C. During pyrolysis about 33.6% of sulfur was removed from the residue, among which 32.1% was formed H2S in gas and 1.5% was transferred into tar, 66.4% of the sulfur was remained in residue char. Compared with coal, the residue has generated more H2S due to presence of Fe1−xS which was enriched in residue during liquefaction process. There is a few COS produced at 400-500 °C during pyrolysis of coal, but it was not detected form pyrolysis of the residue. During CO2 gasification, compared with pyrolysis and steam gasification, there are more COS and less H2S formation, because CO could react with sulfide to form COS. During steam gasification only H2S was produced and no COS detected, because H2 has stronger reducibility to form H2S than CO. After steam gasification no sulfur was detected in the gasification residue. The XRD patterns show after steam gasification, only Fe3O4 is remained in the gasification residue. This indicates that the catalyst added during the liquefaction of coal completely reacted with steam, resulting in the formation of H2 and Fe3O4.  相似文献   

3.
A Victorian brown coal (68.5% C), a Chinese high-volatile Shenmu bituminous coal (82.3% C) and a Chinese low-volatile Dongshan bituminous coal (90% C) were gasified in a fluidised-bed/fixed-bed reactor at 800 °C in atmospheres containing 15% H2O, 2000 ppm O2 or 15% H2O + 2000 ppm O2. While the gasification of these coals in 2000 ppm O2 converted less than 27% of coal-N into NH3, the introduction of steam played a vital role in converting a large proportion of coal-N into NH3 by providing H on char surface. The importance of the roles of steam in the formation of NH3 in atmospheres containing 15% H2O + 2000 ppm O2 decreased with increasing coal rank. This is largely due to the slow gasification of high-rank coal chars, resulting in low availability of H on char surface. The gasification of chars from the high-rank coal appears to produce higher yields of HCN than that of lower rank coals, probably as a result of the decomposition of partially hydrogenated/broken/activated char-N structures during gasification at high temperature. The alkali and alkaline earth metallic species in brown coal tend to favour the release of coal-N as tar-N but have limited effects on char-N conversion during gasification.  相似文献   

4.
Alkali metal-based sorbents were prepared by the impregnation either of potassium carbonate (K2CO3) or of sodium carbonate (Na2CO3) on the supports (activated carbon (AC) and Al2O3). The CO2 absorption and regeneration properties were measured in a fixed bed reactor at the low temperature conditions (CO2 absorption at 60 ‡C and regeneration at 150 °C). The potassium carbonate which was supported on the activated carbon (K2CO3/AC) was clarified as a leading sorbent, of which the total CO2 capture capacity was higher than those of other sorbents. This sorbent was completely regenerated and transformed to its original phase by heating the used sorbent. The activation process before CO2 absorption needed moisture nitrogen containing 1.3–52 vol% H2O for 2 hours either at 60 ‡C or at 90 °C. The activation process played an important role in CO2 absorption, in order to form new active species defined as K2CO3· 1.5 H2O, by X-ray diffraction. It was suggested that the new active species (K2CO3·1.5H2O) could be formed by drying the K4H2(CO3)3·1.5H2O phase formed after pre-treatment with excess water.  相似文献   

5.
In this paper, the ethylene adsorption capacities of the nano-sized carbon hollow spheres (CNB) and active carbon (AC), the Pd (PdCl2) impregnated CNB or AC (Pd/CNB, Pd/AC) and heat treatment under various conditions, were studied at different ethylene concentrations from 64 to 1060 ppm. The results indicated that AC had a good ethylene adsorption capacity at high ethylene concentration. Pd impregnation decreased the ethylene adsorption capacity of AC. Heat treatment and H2 activation could increase the ethylene adsorption capacity, but also lowered than AC itself. CNB had lower ethylene adsorption capacity than AC, but heat treatment and H2 activation could increase its ethylene adsorption capacity markedly. With activating condition from heat treatment in N2 at 300 °C to activation in H2/N2 at 100 °C, to activation in H2 at 200 °C, and to activation in H2 at 300 °C, the ethylene adsorption capacity of Pd/CNB was increased regularly. At low ethylene concentration, viz., 64 ppm, the ethylene adsorption quantities (q a) by Pd/CNB activated in H2 at 200 or 300 °C were higher than any other adsorbents. So, activated in H2 atmosphere at higher than 100 °C, Pd/CNB is particularly advantaged for adsorbing low concentration of ethylene. Amongst all the adsorbents used, Pd/CNB activated in H2 atmosphere at 300 °C for 2 h has the highest ethylene adsorption capacity at lower concentration than 125 ppm. In addition, all the CNB, Pd/CNB, AC, and Pd/AC samples can be easily regenerated in airflow for more than 3 h.  相似文献   

6.
《Ceramics International》2022,48(14):20187-20193
Microwave absorption materials need to be thin and lightweight and possess strong wave absorption ability and a wide absorption frequency band. To satisfy these conditions, we changed the microstructure of the composite by mixing ferrite material with different particle sizes. Specifically, we mixed nanosized nonmagnetic ZnFe2O4 powder into Ni0.6Zn0.4Fe2O4 powder, investigated the microwave absorption properties depending on the packing fraction. The crystal structure of the synthesized ferrite powders was analyzed through XRD, and the particle size was analyzed using a PSA and SEM. The density of the powders, which is required to measure the packing fraction, was determined via the gas disposition method, and the magnetic properties of the composites were analyzed using a VSM. The reflection loss represents the electromagnetic wave absorption characteristics, and it was calculated by substituting the measured permittivity and permeability values, into the equation based on the transmission line theory. The Ni0.6Zn0.4Fe2O4/ZnFe2O4 composite showed 99.9% absorption with a high packing fraction, and the absorption peak shifted to high frequencies. These characteristics suggest that the absorption ability and frequency range of the electromagnetic-wave-shielding composite can be easily controlled. Because of the high-absorption characteristic, absorption frequency control, and cost effectiveness, this composite can be applied to products such as thin electromagnetic-wave-shielding sheets.  相似文献   

7.
《Ceramics International》2016,42(15):16882-16887
A paramagnetic-ferromagnetic transition was observed in normal spinel zinc ferrite (ZnFe2O4) during atomic hydrogenation at room temperature. Magnetic measurements showed enhanced ferromagnetic property with increasing hydrogenation time. The hydrogenated ZnFe2O4 has normal spinel structure according to X-ray diffraction (XRD) and Raman analyses. Iron hydride was found from the XRD and X-ray absorption fine structure results. No A–B site ions exchange was observed in the x-ray absorption spectra while the atomic distances of Fe–O, Zn–O, Fe–Fe, Zn–Zn and Fe–Zn coordinations were reduced. A hybrid of Fe2+ and Fe3+ in hydrogenated ZnFe2O4 can be further revealed through deconvolution of x-ray absorption near edge structure. The paramagnetic-ferromagnetic transition and enhanced ferromagnetic property were mainly due to the formation of iron hydride and the B-site super-exchange interactions of Fe2+ and Fe3+.  相似文献   

8.
《Ceramics International》2019,45(15):18389-18397
In this paper, nanosized ZnFe2O4 with different morphologies were prepared by electrospinning method. The choice of initial parameters, such as PVP concentration, metal salt concentration, electrostatic voltage, calcination temperature and calcination rate, were investigated to prepare desired morphologies. The as-prepared samples exhibited various shapes of nano-particle, nano-rods, nano-beads and nano-fiber. The relationship between microstructure and electromagnetic properties was discussed in detail. It has been found that the saturation magnetization of ZnFe2O4 ferrite not changed significantly with the various morphologies and the values were nearly 13 emu/g. However, the coercivity was varied with the different morphologies, and the maximum value of 48.79 Oe was observed in the ZnFe2O4 nano-fiber. Moreover, the magnetic loss capacity of ZnFe2O4 was improved with the enhancement of the morphology anisotropy. The various shaped ZnFe2O4 can be promising lightweight microwave absorbers and it is significant to develop novel microwave absorption mechanism of ZnFe2O4 ferrite.  相似文献   

9.
This paper deals with the simultaneous removal of H2S and COS in the temperature range of 400-650 °C at 1 bar by using iron-based sorbents. The iron-based sorbents were prepared using iron oxide and cerium oxide with coal fine ash as the support. Simulated coal gas was used in the sulfidation experiments and 5% O2 in N2 gas was used for regeneration of sorbents. Both sulfidation and regeneration experiments have been carried out using a fixed-bed quartz reactor. The product gases were analyzed using a GC equipped with a TCD and a FPD. The results demonstrated that both H2S and COS can be effectively reduced using the iron-based sorbents supported on fine coal ash. XRD analysis shows that Fe1−xS phase has formed during sulfidation indicating a high sulfur capacity of the sorbent. The mechanism of the removal of COS simultaneously with H2S is also discussed.  相似文献   

10.
Partial oxidation of methane into syngas was conducted over fresh and sulfided catalysts at a temperature range of 450–750 °C. The temperature dependence of conversion, H2/CO ratio, and the CO2 concentration were measured for both fresh and sulfided catalysts. Regardless of metal type, metal loading, support type, and the methods of preparation it appears that all the fresh catalysts were very active and conversions of higher than 70% with H2/CO ratio of about 2 were observed at 750 °C. Pulse sulfidation appears to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the Rh(0.5%)/Al2O3 and NiMg2Ox-1100 °C (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady-state conditions, flowing H2S/Ar mixture over the catalysts, significantly reduce catalyst activity. The catalysts were characterized before and after reaction with H2S using temperature-programmed oxidation (TPO) and reduction (TPR), X-ray diffraction, and XPS.  相似文献   

11.
In situ polymerization of aniline was carried out in the presence of zinc ferrite to synthesize polyaniline/ZnFe2O4 composites (PANI/ZnFe2O4) by chemical oxidation method. The composites have been synthesized with various compositions (10, 20, 30, 40, and 50 wt %) of zinc ferrite in PANI. From the Fourier transform infrared spectroscopy (FTIR) studies on polyaniline/ZnFe2O4 composites, the peak at 1140 cm−1 is considered to be measure of the degree of electron delocalization. The surface morphology of these composites was studied with scanning electron micrograph (SEM). The dc conductivity has been studied in the temperature range from 40–160°C and supports the one‐dimensional variable range hopping (1DVRH) model proposed by Mott. The results obtained for these composites are of scientific and technological interest. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
A hybrid sorbent material for removal of hydrogen sulfide from air was developed. The material is based on activated carbon and iron compounds obtained from waste iron(II) sulfate(VI) heptahydrate. The iron salt is deposited on the carbonaceous support and subjected to oxidation (Fe2+ to Fe3+) using atmospheric oxygen under alkaline conditions. An effect of H2O2 addition to the process on the composition of the resultant material was also examined. X-ray diffraction (XRD) analyses confirmed easy conversion of waste FeSO4·7H2O to iron oxides Fe3O4 and FeOOH. The activated carbon supporting iron oxides revealed a higher efficiency in H2S elimination from air compared to the commercial activated carbon, without any modification.  相似文献   

13.
The Korean pilot-scale gasification facility consists of a coal gasifier, hot gas filtering system, and acid gas removal (AGR) system. The syngas stream from the coal gasification at the rate of 100–120 Nm3/hr included pollutants such as fly ash, H2S, COS, etc. The acid gas, such as H2S and COS, is removed in the AGR system before generating electricity by gas engine and producing chemicals like Di-methyl Ether (DME) in the catalytic reactor. A hydrolysis system was installed to hydrolyze COS into H2S. The designed operation temperature and pressure of the COS hydrolysis system are 150 °C and 8 kg/cm2. After the hydrolysis system, COS was reduced below 1 ppm at the normal operating condition. The normal designed operation temperature and pressure of the AGR system are below 40 °C and 8 kg/cm2. Fe-chelate was used as an absorbent. H2S was removed below 0.5 ppm in the AGR system when the maximum concentration of H2S was 900 ppm. A small scale COS adsorber was also installed and tested to remove COS below 0.5 ppm. COS was removed below 0.1 ppm after the COS adsorbents such as the activated carbon and ion exchange resin. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

14.
《化学,工程师,技术》2017,89(9):1247-1254
Desulfurization of biogas is essential for its application in solid oxide fuel cells. The influence of CH4, CO2, H2, and O2 as well as the effect of moisture onto desulfurization performance of an activated carbon, an adsorbent based on a CuO‐MnO mixture, and a zeolite adsorbent were analyzed. The use of moisturized gas had no negative influence on the H2S adsorption performance of activated carbon. The CuO‐MnO sorbent showed the best performance, but the presence of moisture had a negative influence. The performance of zeolite dropped for three gas mixtures, while for two other mixtures moisture had little to no influence on H2S adsorption performance.  相似文献   

15.
陈榕  郑翔龙  胡熙恩 《化工学报》2011,62(Z2):102-106
为了研究电化学再生活性炭纤维(ACF)的效果,以SCN-为模型物,通过测量再生后活性炭纤维对SCN-的吸附容量的大小,考察了时间、吸附质浓度、再生循环次数等再生过程中的影响因素。结果表明,适宜的再生条件为0.8 mA正极化2 h,0.5 mol·L-1的硫酸溶液,能使再生后ACF的吸附容量提高为原始ACF的3倍。5次电化学再生循环后,ACF的吸附容量没有明显降低,再生后ACF纤维表面也没有明显损伤。  相似文献   

16.
ZnFe2O4 nanomaterials have been synthesized by simple one-step solid-phase chemical reaction between Zn(CH3COO)2·2H2O, FeCl3·9H2O and NaOH within a very short time at room temperature. The solid-phase products were characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, thermogravimetic analysis, transmission electron microscopy and scanning electron microscopy. Results indicated that the particle size of product can be obviously let up and the agglomeration phenomenon can be improved by the surfactant. Moreover, the ZnFe2O4 nanomaterials were applied in gas sensor and exhibited much better sensing performance than bulk ZnFe2O4. The as-prepared ZnFe2O4 nanomaterials have high sensitivity, good selectivity and fast response/recovery characteristic for ethanol and hydrogen sulfide. The improved ZnFe2O4 nanomaterials have high response value of 21.5 and 14.8 for ethanol and hydrogen sulfide in the optimized operating temperature of 332 °C and 240 °C, respectively. The response and recovery time was found to be within 4 s and 14 s for ethanol, while 7 s and 25 s for hydrogen sulfide.  相似文献   

17.
Char reactivity is an important factor influencing the efficiency of a gasification process. As a low-rank fuel, Victorian brown coal with high gasification reactivity is especially suitable for use with gasification-based technologies. In this study, a Victorian brown coal was gasified at 800 °C in a fluidised-bed/fixed-bed reactor. Two different gasifying agents were used, which were 4000 ppm O2 balanced with argon and pure CO2. The chars produced at different gasification conversion levels were further analysed with a thermogravimetric analyser (TGA) at 400 °C in air for their reactivities. The structural features of these chars were also characterised with FT-Raman/IR spectroscopy. The contents of alkali and alkaline earth metallic species in these chars were quantified. The reactivities of the chars prepared from the gasification in pure CO2 at 800 °C were of a much higher magnitude than those obtained for the chars prepared from the gasification in 4000 ppm O2 also at 800 °C. Even though both atmospheres (i.e. 4000 ppm O2 and pure CO2) are oxidising conditions, the results indicate that the reaction mechanisms for the gasification of brown coal char at 800 °C in these two gasifying atmospheres are different. FT-Raman/IR results showed that the char structure has been changed drastically during the gasification process.  相似文献   

18.
H2S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O2-blown coal-derived synthesis gas. The H2S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H2S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H2S and 0.3 order in O2.  相似文献   

19.
Flammable, explosive and toxic gases, such as hydrogen, hydrogen sulfide and volatile organic compounds vapor, are major threats to the ecological environment safety and human health. Among the available technologies, gas sensing is a vital component, and has been widely studied in literature for early detection and warning. As a metal oxide semiconductor, zinc ferrite (ZnFe2O4) represents a kind of promising gas sensing material with a spinel structure, which also shows a fine gas sensing performance to reducing gases. Due to its great potentials and widespread applications, this article is intended to provide a review on the latest development in zinc ferrite based gas sensors. We first discuss the general gas sensing mechanism of ZnFe2O4 sensor. This is followed by a review of the recent progress about zinc ferrite based gas sensors from several aspects: different micro-morphology, element doping and heterostructure materials. In the end, we propose that combining ZnFe2O4 which provides unique microstructure (such as the multi-layer porous shells hollow structure), with the semiconductors such as graphene, which provide excellent physical properties. It is expected that the mentioned composites contribute to improving selectivity, long-term stability, and other sensing performance of sensors at room or low temperature.  相似文献   

20.
Carbonate-rich bentonite was modified by iron and copper chlorides in order to synthesize effective and cheap adsorbents for neutralization of H2S in low-concentrated exhaust gases. Bentonite and modified bentonite were analysed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and BET surface area analysis. In addition, bentonite and modified bentonite were tested as hydrogen sulfide adsorbents. Iron-containing material showed a significant improvement in the capacity for H2S removal. The longest time of effective protective action (before H2S appears on the outlet of the column) was obtained for the bentonite modified with copper hydroxide. The results indicated that on the surface of modified samples hydrogen sulfide reacts with metal hydroxide forming sulfides. Sulfided iron-containing sample could be regenerated by exposing it to the air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号