首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Martin Malenshek 《Fuel》2009,88(4):650-656
Alternative gaseous fuels, like syn-gas and bio-gas, are attractive fuels for internal combustion engines due to energy and environmental concerns. Although the worldwide use of alternative gaseous fuels has increased, the knock properties of these fuels are not well understood. The methane number (MN) knock rating technique was selected based on its range and sensitivity. Eight alternative gaseous fuel compositions were simulated with a gas blending system and tested for MN in a Cooperative Fuel Research (CFR) F-2 engine. The alternative gaseous fuels ranged from 24 to 140 MN (natural gas typical range 75-95).  相似文献   

2.
In a combined heat and power (CHP) plant, spark ignition engines must operate at their maximum power to reduce the pay back time. Because of environmental and economic concerns, engines are set with high compression ratios. Consequently, optimal operating conditions are generally very close to those of knock occurrence and heavy knock can severely damage the engine piston.There are two main protection techniques: the curative one commonly used by engine manufacturers and well documented in the literature and the preventive one based on a knock prediction according to the quality of the supplied gas. The indicator used to describe gas quality is the methane number (MN). The methane number requirement (MNR) of the engine is defined, for an engine set (spark advance, air-fuel ratio, and load), as the minimum value of MN above which knock free operation is ensured. To prevent knock occurrence, it is necessary to adapt the engine tuning according to variable gas composition. The objective of the present work is to validate the concept of knock preventive protection. First, a prediction of MNR according to engine settings (ES) is computed through a combustion simulator composed of a thermodynamic 2-zone model. Predicted MNR are compared to experimental results performed on a single-cylinder SI gas engine and show good agreement with numerical results (uncertainty below 1 point). Then, the combustion simulator is used to generate a protection mapping. At last, the knock preventive protection was successfully tested.  相似文献   

3.
S. Szwaja  J.D. Naber 《Fuel》2010,89(7):1573-1582
Alcohols, because of their potential to be produced from renewable sources and because of their high quality characteristics for spark-ignition (SI) engines, are considered quality fuels which can be blended with fossil-based gasoline for use in internal combustion engines. They enable the transformation of our energy basis in transportation to reduce dependence on fossil fuels as an energy source for vehicles. The research presented in this work is focused on applying n-butanol as a blending agent additive to gasoline to reduce the fossil part in the fuel mixture and in this way to reduce life cycle CO2 emissions. The impact on combustion processes in a spark-ignited internal combustion engine is also detailed. Blends of n-butanol to gasoline with ratios of 0%, 20%, and 60% in addition to near n-butanol have been studied in a single cylinder cooperative fuels research engine (CFR) SI engine with variable compression ratio manufactured by Waukesha Engine Company. The engine is modified to provide air control and port fuel injection. Engine control and monitoring was performed using a target-based rapid-prototyping system with electronic sensors and actuators installed on the engine [1]. A real-time combustion analysis system was applied for data acquisition and online analysis of combustion quantities. Tests were performed under stoichiometric air-to-fuel ratios, fixed engine torque, and compression ratios of 8:1 and 10:1 with spark timing sweeps from 18° to 4° before top dead center (BTDC). On the basis of the experimental data, combustion characteristics for these fuels have been determined as follows: mass fraction burned (MFB) profile, rate of MFB, combustion duration and location of 50% MFB. Analysis of these data gives conclusions about combustion phasing for optimal spark timing for maximum break torque (MBT) and normalized rate for heat release. Additionally, susceptibility of 20% and 60% butanol-gasoline blends on combustion knock was investigated. Simultaneously, comparison between these fuels and pure gasoline in the above areas was investigated. Finally, on the basis of these conclusions, characteristic of these fuel blends as substitutes of gasoline for a series production engine were discussed.  相似文献   

4.
Yufeng Li  Hua Zhao  Tom Ma 《Fuel》2006,85(4):465-473
The concept of fuel stratification has been proposed and applied to a four-valve port injection spark ignition engine. In this engine, two different fuels or fuel components are admitted through two separate inlet ports and stratified into two regions laterally by strong tumble flows. Each stratified region has a spark plug to control the ignition. This engine can operate in the stratified lean-burn mode at part loads when fuel is supplied only to one of the inlet ports. While at high load operation, an improved fuel economy and higher power output are also expected through increased anti-knock features by taking advantage of the superior characteristics of different fuel or fuel components. This is achieved by igniting the lower RON (research octane number) fuel first and leaving the higher RON fuel in the end gas region. In this paper, knock limits of homogenous and different fuel stratification combustion modes at high loads were investigated experimentally. Primary reference fuels (PRF), iso-octane and n-heptane, were used to simulate three fuels of different RON: RON90, RON95 and RON100. The research results show that with stratified fuel components of low and high octane numbers, the knock limit, as defined by the minimum spark advance for knocking combustion, was extended apparently when the lower RON fuel was ignited first. In addition, the knock limit could also be extended by increasing the amount of higher RON fuel. However, igniting first the lower RON fuel in the fuel stratification combustion mode produced little improvement in anti-knock behaviour over the homogeneous combustion of the mixture of those two stratified fuels with an average RON.  相似文献   

5.
M. Bahattin Çelik  Faruk Alkan 《Fuel》2011,90(4):1591-1598
The methanol has greater resistance to knock and it emits lower emissions than neat gasoline. As single cylinder small engines have low compression ratio (CR), and they run with slightly rich mixture, their power are low and emission values are high. The performance can be increased at high CR if these engines are run with fuels which have high octane number. In this study, methanol was used at high CR to increase performance and decrease emissions of a single-cylinder engine. Initially, the engine whose CR was 6/1 was tested with gasoline and methanol at full load and various speeds. Then, the CR was raised from 6/1 to 8/1and 10/1, gradually. The knock was not observed at the CRs of 8/1 and 10/1 when using methanol while the knock was observed at the CR of 8/1 when using gasoline. The knock was determined from the cylinder pressure-time curves. The results showed that some decreases were obtained in CO, CO2 and NOx emissions without any noticeable power loss when using methanol at the CR of 6/1. By increasing the CR from 6/1 to 10/1 with methanol, the engine power and brake thermal efficiency increased by up to 14% and 36%, respectively. Moreover, CO, CO2 and NOx emissions were reduced by about 37%, 30% and 22%, respectively.  相似文献   

6.
辛烷值试验机是测定汽油的马达法和研究法辛烷值的大型专用设备.本文重点介绍了美国ASTM-CFR辛烷值试验机定期拆机检修的整个过程和操作步骤,介绍了设备检修的实践经验和注意事项.  相似文献   

7.
《Fuel》2005,84(7-8):961-971
This paper presents an analysis of the cycle-to-cycle combustion variation as reflected in the combustion pressure data of a single cylinder, naturally aspirated, four stroke, Ricardo E6 engine converted to run as dual fuel engine on diesel and gaseous fuel of LPG or methane. A measuring set-up consisting of a piezo-electric pressure transducer with charge amplifier and fast data acquisition card installed on an IBM microcomputer was used to gather the data of up to 1200 consecutive combustion cycles of the cylinder under various combination of engine operating and design parameters. These parameters included type of gaseous fuel, engine load, compression ratio, pilot fuel injection timing, pilot fuel mass, and engine speed. The data for each operating conditions were analyzed for the maximum pressure, the maximum rate of pressure rise—representing the combustion noise, and indicated mean effective pressure. The cycle-to-cycle variation is expressed as the mean value, standard deviation, and coefficient of variation of these three parameters. It was found that the type of gaseous fuel and engine operating and design parameters affected the combustion noise and its cyclic variation and these effects have been presented.  相似文献   

8.
Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties.Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NOx emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency.  相似文献   

9.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

10.
This paper investigates the effect of using gasoline–ethanol mid-level blends (0–20% ethanol) on engine performance and exhausts emissions on a single cylinder engine by AVL model 5401, spark ignited and electronically controlled with DOHC. Engine tests were conducted for different lambda values, brake power and brake specific fuel consumption, while exhaust emissions were analyzed for carbon monoxide, unburned hydrocarbons and nitrogen oxides. Using blends at different proportions for a steady state of 2000 rpm at partial charge minimizing load and speed variations at a minimum in order to prevent them from being a measurable factor. Results showed that at constant mass fuel rates, the increase in burning rate associated with ethanol is tempered by the process combustion speed reduction related to the enleanment proportional to the ethanol added to gasoline. Blends up to 10% have marginal effects in combustion rates when compared to non-oxygenated fuels, but for 20%, combustion process slows down and increases cyclic dispersion in the results, the effect in fuel consumption observed was lower than predicted by the reduction of energy content in the gasoline, suggesting positive effects in combustion efficiency.  相似文献   

11.
S. Murugan  M.C. Ramaswamy  G. Nagarajan 《Fuel》2008,87(10-11):2111-2121
Alternate fuels like ethanol, biodiesel, LPG, CNG, etc., have been already commercialised in the transport sector. In this context, pyrolysis of solid waste is currently receiving renewed interest. The disposal of waste tyres can be simplified to a certain extent by pyrolysis. In the present work, the crude tyre pyrolyisis oil (TPO) was desulphurised and then distilled through vacuum distillation. Also, two distilled tyre pyrolysis oil (DTPO)–diesel fuel (DF) blends at lower and higher concentrations were used as fuels in a four stroke single cylinder air cooled diesel engine without any engine modification. The results were compared with diesel fuel (DF) operation. Results indicate that the engine can run with 90% DTPO and 10% diesel fuel.  相似文献   

12.
O?uzhan Do?an 《Fuel》2011,90(7):2467-9430
Nitrogen oxides and smoke emissions are the most significant emissions for the diesel engines. Especially, fuels containing high-level oxygen content can have potential to reduce smoke emissions significantly. The aim of the present study is to evaluate the influence of n-butanol/diesel fuel blends (as an oxygenation additive for the diesel fuel) on engine performance and exhaust emissions in a small diesel engine. For this aim five-test fuels, B5 (contains 5% n-butanol and 95% diesel fuel in volume basis), B10, B15, B20 and neat diesel fuel, were prepared to test in a diesel engine. Tests were performed in a single cylinder, four stroke, unmodified, and naturally aspirated DI high speed diesel engine at constant engine speed (2600 rpm) and four different engine loads by using five-test fuels. The experimental test results showed that smoke opacity, nitrogen oxides, and carbon monoxide emissions reduced while hydrocarbon emissions increased with the increasing n-butanol content in the fuel blends. In addition, there is an increase in the brake specific fuel consumption and in the brake thermal efficiency with increasing n-butanol content in fuel blends. Also, exhaust gas temperature decreased with increasing n-butanol content in the fuel blends.  相似文献   

13.
D.H. Qi  H. Chen  Y.ZH. Bian 《Fuel》2010,89(5):958-964
This work aims on the efficient use of ethanol-biodiesel-water micro-emulsions in a diesel engine. A single cylinder direct injection diesel engine is tested using neat biodiesel and the micro-emulsions as fuels under variable operating conditions. The results indicate that, compared with biodiesel, the peak cylinder pressure of the micro-emulsions is almost identical, and the peak pressure rise rate and peak heat release rate are higher at medium and high engine loads. At low engine loads, those of the micro-emulsions are lower. The start of combustion is later for the micro-emulsions than for biodiesel. For the micro-emulsions, there is slightly higher brake specific fuel consumption (BSFC), while lower brake specific energy consumption (BSEC). Drastic reduction in smoke is observed with the micro-emulsions at high engine loads. Nitrogen oxide (NOx) emissions are found slightly lower under all rang of engine load for the micro-emulsions. But carbon monoxide (CO) and hydrocarbon (HC) emissions are slightly higher for the micro-emulsions than that for biodiesel at low and medium engine loads.  相似文献   

14.
《Fuel》2006,85(12-13):1880-1893
For fuels tested at critical compression ratio, the in-cylinder pressure development exhibits a distinct change in the pressure rise rate, argued to be the onset of knock. The estimation of the position of knock is important for the evaluation of the burn duration of the fuel and its development features leading up to the autoignition of the end-gas. This paper presents a weighted mean square error criterion for the estimation of the knock-point of fuels tested in a spark-ignition engine. The bootstrap method was applied for estimating the mean square error. It is shown that the criterion can be applied for estimating the knock-point of different fuels tested under varying critical compression ratios. In addition, following the accurate estimation of the knock-point, the estimation of important fuel properties is presented.  相似文献   

15.
This paper addresses gaseous emissions smoke (soot) and particulate matter in large-scale diesel engine exhaust. The test engine was a large-scale turbocharged, after-cooled mean speed ( 500 rpm) direct-injection diesel engine and the power per cylinder was about 1 MW. Emission measurements were carried out on burning heavy fuel (HFO) and light fuel (LFO) oils. The test modes for the investigation were a propulsion mode (marine application) and a generator mode (power plant application). Gaseous emissions were measured according to the IMO technical code, smoke (soot) emissions were determined optically and particulate matter (PM) was measured by gravimetric impactor designed for five size fractions. In comparison the emissions from HFO and LFO utilisations indicate slightly higher NO and CO emissions for HFO, while LFO gives clearly higher emissions of hydrocarbons (HC). Emissions of soot and CO appeared to correlate very well, being very high for both fuels throughout the propulsion mode and low load, otherwise being similar for both modes. PM emissions are more than three times higher with HFO than with LFO and appear to decrease with the load except for HFO during the generator mode where an increase of PM emissions with the load is seen. Some data on sampled particles is given.  相似文献   

16.
S. Heyne 《Fuel》2009,88(3):547-552
A novel ignition concept based on autoignition in an unscavanged prechamber is currently being developed at the Laboratory for Industrial Energy Systems (LENI). On a single cylinder test engine a series of experimental runs (CR = 8.5-14, λ = 1 − 1.6, RPM = 1150/1500 min−1) have been realized with natural gas as fuel, comparing the new ignition concept to standard spark ignition. The comparison is based on fuel efficiency and exhaust emissions (CO, THC, NOx). The feasibility of operating the engine in autoignition mode has been demonstrated, and the potential of prechamber autoignition, in particular in the lean combustion regime, is indicated by the trends in fuel efficiency and emission concentration. The resistive heating of the prechamber walls has been shown to be an effective mean to trigger ignition. The prechamber could clearly be identified as primary ignition location. A reduction of the cycle-by-cycle variations - due to mixture fluctuations - is necessary to exploit the full potential of this engine concept.  相似文献   

17.
This paper describes an experimental study of using tyre pyrolysis oil (TPO) obtained from waste automobile tyres by vacuum pyrolysis method, as a fuel in diesel engine. In this work, performance and emission parameters of a single cylinder water cooled diesel engine running on TPO diesel reference fuel (RF) blends in steps of 20% on volume basis of TPO, viz. TPO20 up to TPO70 were used as fuels and the results compared with diesel operation. Results indicated that reliable operation can be achieved up to 70% of TPO diesel blends. Thermal efficiencies were lower compared to diesel operation. Higher smoke, HC and CO emissions were recorded in the experimentation. Oil sticking was occasionally found on the nozzle stem and sac. There was no corrosion in the injection system after running the engine with TPO–RF blends.  相似文献   

18.
Hyungmin Lee 《Fuel》2009,88(9):1680-1686
The effect of ethanol-blended gasoline fuels on the characteristics of time-resolved particle concentration and size distribution was investigated in a gasoline engine and in a flexible fuel vehicle. Particle concentration levels from the vehicle running on ethanol-blended gasoline were compared to those of diesel vehicles with and without diesel particulate filter (DPF). In the engine test, particle size distribution and number concentration using E0 and E10 fuels were analyzed with a differential mobility spectrometer (DMS500) at dynamic engine operation conditions. In the vehicle emission test, time-resolved particle concentrations with ethanol blending contents (E0, E10, and E85) during a new European driving cycle (NEDC) were analyzed with a golden particle measurement system (GPMS) as recommended by the particle measurement programme (PMP). As the excess air ratio is shifted to lean conditions and as the spark and intake valve opening timing are retarded, particle number levels were reduced with both E0 and E10. The particle concentration from ethanol-blended gasoline was slightly decreased regardless of engine operating conditions. From the driving test results, the total particle concentration from the spark ignition and the diesel vehicle with a DPF was decreased by two orders of magnitude compared to a non-DPF diesel vehicle. As the oxygenated component is increased, particle emissions decreased. The total particle concentration for E85 was reduced by 37% compared to E0.  相似文献   

19.
Aviation fuel JP-5 and biodiesel on a diesel engine   总被引:1,自引:0,他引:1  
Naval aviation turbine fuel, JP-5, has been accepted as alternative to JP-8 in the frame of the Single Fuel Policy. This has resulted in some ongoing research on JP-5 fuel for its application as a naval single fuel. The necessity to cope with the environmental problems identified in the process of implementing the Single Fuel Policy as well as the strict requirements of modern diesel engines has lead to the need of improved single fuel quality. The development of biomass derived substitutes for diesel, such as biodiesel, is a possible attractive solution. The present paper is an effort to evaluate JP-5 along with diesel and biodiesel for use in a diesel engine. These fuels were used alone and in various mixture fractions in a single cylinder stationary diesel engine in order to evaluate their performance under defined operating conditions of the engine. JP-5 reduced both the NOx and particulate matter emissions as compared to the reference fuel case. Biodiesel significantly lowered particulate emissions, but slightly increased NOx emissions and fuel consumption. Fuel sulfur content has an undesired effect on smoke opacity. Biodiesel increased the fuel consumption when added to petroleum fuels and the increase was larger at high engine loads. Diesel and JP-5 showed similar fuel consumption, with diesel consumption increasing at high engine loads. Ternary blends showed similar behavior. The blends with lower biodiesel content showed lower volumetric fuel consumption.  相似文献   

20.
Lean combustion is a standard approach used to reduce NOx emissions in large bore (35–56 cm) stationary natural gas engines. However, at lean operating points, combustion instabilities and misfires give rise to high total hydrocarbon (THC) and carbon monoxide (CO) emissions. To counteract this effect, precombustion chamber (PCC) technology is employed to allow engine operation at an overall lean equivalence ratio while mitigating the rise of THC and CO caused by combustion instability and misfires. A PCC is a small chamber, typically 1–2% of the clearance volume. A separate fuel line supplies gaseous fuel to the PCC and a standard spark plug ignites the slightly rich mixture (equivalence ratio 1.1–1.2) in the PCC. The ignited PCC mixture enters the main combustion chamber as a high energy flame jet, igniting the lean mixture in the main chamber. Typically, natural gas fuels both the main chamber and the PCC. In the current research, a mixture of reformed natural gas (syngas) and natural gas fuels the PCC. Syngas is a broad term that refers to a synthetic gaseous fuel. In this case, syngas specifically denotes a mixture of hydrogen, carbon monoxide, nitrogen, and methane generated in a natural gas reformer. Syngas has a faster flame speed and a wider equivalence ratio range of operation than methane. Fueling the PCC with Syngas reduces combustion instabilities and misfires. This extends the overall engine lean limit, enabling further NOx reductions.Research results presented are aimed at quantifying the benefits of syngas PCC fueling. A model is developed to calculate the equivalence ratio in the PCC for different mixtures and flowrates of fuel. An electronic injection valve is used to supply the PCC with syngas. The delivery pressure, injection timing, and flow rate are varied to optimize PCC equivalence ratio. The experimental results show that supplying the PCC with 100% syngas improves combustion stability by 21% compared to natural gas PCC fueling. A comparison at equivalent combustion stability operating points between 100% syngas and natural gas shows an 87% reduction in NOx emissions for 100% syngas PCC fueling compared to natural gas PCC fueling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号