首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New experimental data concerning the gas holdup in bubble columns equipped with porous sparger were acquired. The effect of surfactant additives on gas holdup in the pseudo-homogeneous regime has been studied. Three different commercial surfactants (Triton X-100®, SDS®, CTAB®) were used and four aqueous solutions of each one were employed, in order to study the effect of the surfactant concentration and type (i.e., non-ionic, anionic, cationic). A general correlation, which includes dimensionless numbers (i.e., Froude, Archimedes and Bond) as well as the geometric characteristics of the column and the sparger, can predict the gas holdup in various systems (i.e., pure substances, ionic surfactants, non-ionic surfactants) with reasonable accuracy.  相似文献   

2.
This work is a study of the effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Various liquids covering a range of surface tension and viscosity values are employed, while the gas phase is atmospheric air. A fast video technique is used for visual observations and, combined with image processing, is used for gas holdup and bubble size measurements. New data on average gas holdup values, bubble size distributions and Sauter diameters are presented and are consistent with existing physical models on coalescence/breakage. A correlation based on dimensionless groups for the prediction of gas holdup in the homogeneous regime is proposed and found to be in good agreement with available data.  相似文献   

3.
This paper investigates the effect of sparger geometry on flow regime of a bubble column. The experiments presented in this study were performed under atmospheric pressure with water/air in a cylindrical Plexiglas® column of 33.0 cm i.d. and 3.0 m height. Three different perforated plate spargers were employed. Hole diameter was varied in the range of 1–3 mm, while the free area was 1.0%.The theory of linear stability is used for the prediction of regime transitions in the bubble column and a comparison has been presented between the predictions and the experimental observations. A good agreement between the predictions and the experimental values of transition gas holdup has been obtained.In addition, the data from the literature has been analyzed. Experimental values of transition gas holdups and predictions by the theory of linear stability have been compared with those of literature.A correlation based on dimensionless numbers (Archimedes, Froude, Eötvös and Weber) and the group (do/DC) for the prediction of gas holdup in homogeneous regime is proposed. The average error between the correlation predictions and experimental values remains under ±10%.The proposed correlation is compared with the published data and found to be in fairly good agreement.  相似文献   

4.
Experimental measurement of gas holdup was carried out in a medium-size gas-liquid-liquid bubble column with a multiple nozzle sparger plate using air, water and organic liquids. It was found that the fractional holdup depends on gas velocity, liquid properties, phase inversion in the liquid mixture as well as spreading coefficient of the organic liquid. In the presence of a liquid with a negative spreading coefficient the holdup is a minimum at the phase inversion point. but the reverse is true for a liquid with a positive coefficient of spreading. Observed bubble characteristics have been discussed. Correlations for gas holdup have been developed for different ranges of liquid composition.  相似文献   

5.
滴流床反应器内脉冲流下动持液量实验   总被引:1,自引:1,他引:0       下载免费PDF全文
对气液强相互作用下滴流床反应器内的流体动力学进行了分析讨论 .实验测定了脉冲流流型下的床层平均动持液量 .考察了气液流率、液体黏度、填料材料等因素对动持液量的影响 .根据对滴流床反应器内流体流动机理的分析及实验结果 ,提出了关联脉冲流型式下动持液量的关联式 .该关联式能很好地关联实验数据 ,可用于预测温和型脉冲流下的动持液量  相似文献   

6.
Time-dependent gas holdup variation in a two-phase bubble column is reported with air and tap water as the working fluids. The results indicate that time-dependent gas holdup is closely related to the water, whose quality is unsteady and changes, not only during the two-phase flow, but also during idle periods. The significance and characteristics of the time-dependent gas holdup variation are influenced by the bubble column operation mode (cocurrent or semi-batch), the sparger orientation, the superficial gas velocity, and the superficial liquid velocity. It is proposed that a volatile substance (VS), which exists in the water in very small concentrations and inhibits bubble coalescence, evaporates during column operation and results in a time-dependent gas holdup. The influence of bubble column operation mode, sparger orientation, superficial gas velocity, and superficial liquid velocity on the time-dependent gas holdup variation are explained based on their effects on bubble size, bubble contacting frequency and mixing intensity. This work reveals that regular tap water may cause significant reproducibility problems in experimental studies of air-water two-phase flows.  相似文献   

7.
The local hydrodynamic properties of the gas phase in an internal-loop airlift reactor were investigated in this study. The hydrodynamic properties including gas holdup, bubble velocity and bubble chord length were measured by dual electrical resistivity probes. The chord length distribution was then transformed to the bubble size distribution by modeling the bubbles as ellipsoids. It was found that the gas holdup increased with decreasing bubble velocity. In addition, most bubbles tended to rise along the riser central axis. Thus, the gas holdup in the axis was higher. The bubble size, bubble velocity and gas holdup were relatively constant in the axial direction of the riser except in the zones near the gas sparger and the gas–liquid separator. The bubble velocity became slower when the bubbles approached the gas–liquid separator. Moreover, the bubble size and bubble velocity for the three-phase system were relatively insensitive to the radial direction compared to those for the two-phase system. It was also found in this study that the bubble rise velocity and bubble size for the three-phase system were lower than that for the two-phase system. However, the gas holdup for the three-phase system were higher than that for the two-phase system due to bubble breakage caused by the solid particles.  相似文献   

8.
The bubble properties in the column flotation system are deeply affected by the bubble-generator type, frother dosage, and superficial gas velocity. This study is to determine the bubble-generator type, which effectively produces micro-bubbles to affect the flotation efficiency. Characteristics for two types of bubble generators like the in-line mixer and sparger are examined by bubble properties such as bubble diameter, holdup and bubble velocity. Micro bubbles generated from an in-line mixer result in the increase of the bubble rising velocity and gas holdup. Bubbles produced at the in-line mixer were more effective for operating the flotation system than that of the sparger. It means that the in-line mixer bubble generator is more effective than a sparger in designing or operating the column flotation system.  相似文献   

9.
Electrical resistance tomography (ERT) is used to measure void fraction wave characteristics and to identify flow pattern in a bubble column reactor (0.24 m diameter, 2.75 m height). The effects of column pressure and superficial gas velocities for different sparger geometry and for different flow pattern have been investigated. The ERT sensor can distinguish the void fraction disturbances in different flow regimes with a good clarity. The holdup derived from ERT is in good agreement with the hold-up values measured by pressure transmitters. Different flow regimes have been identified based on void fraction properties and wall pressure fluctuations. The spectral analysis of ERT measurements yields quantitative information, such as a characteristic time and a characteristic frequency of void fraction waves, which are closely related to flow structure in the prevailing regime. The experimental observations are compared with the literature.  相似文献   

10.
The objective of this study was to develop a unified data-driven correlation for the overall gas hold-up for various gas-liquid systems using support vector regression (SVR)-based modeling technique. Over the years, researchers have amply quantified the hydrodynamics of bubble column reactors in terms of the overall gas hold-up. In this work, about 1810 experimental points were collected from 40 open sources spanning the years 1965-2007. The model for overall gas hold-up was established as a function of several parameters which include superficial gas velocity, superficial liquid velocity, gas density, molecular weight of gas, sparger type, sparger hole diameter, number of sparger holes, liquid viscosity, liquid density, liquid surface tension, operating temperature, operating pressure and column diameter of the gas-liquid system. For understanding the hold-up behavior, the data used for training the model was grouped into various gas-liquid systems viz., air-water, gas-aqueous viscous liquids, gas-organic liquids, gas-aqueous electrolyte solutions and gas-liquid systems operated over a wide range of pressure. A generalized model established using SVR was evaluated for its performance for various gas-liquid systems. Statistical analysis showed that the proposed generalized SVR-based correlation for overall gas hold-up has prediction accuracy of 97% with average absolute relative error (% AARE) of 12.11%. A comparison of this correlation with the selected system specific correlations in the literature showed that the developed SVR-based correlation significantly gives enhanced prediction of overall gas hold-up.  相似文献   

11.
Systems generating uniform small bubbles are used in many mineral processing and chemical operations. We investigated the generation of smaller bubbles by using a two fluid jet system. Gas holdup results are reported in terms of the effect of superficial gas and liquid velocities in relation to the pressure in a bubble column with a water jet sparger. Experiments were conducted with hydrostatic head of 80 cm, 100 cm, and 120 cm in the bubble column. The gas velocity varied from 0.122 to 1.22 cm/s, and water flow rate from 33.3 to 333 cm3/s. Experiments were conducted at pressures of 2 atms., 3 atms. 4 atms. and 5 atms., and bubble sizes were measured by a digital camera (bubble compared to a reference wire inside the bubble column). Results show that the gas holdup increases with the pressure and superficial gas velocities; and at pressures of 2, 3, 4 and 5 atms., the gas holdup increases by 8.75%, 9.166%, 10% and 10%, respectively. The maximum gas holdup of 16.4% was observed at a liquid level of 80 cm and pressure of 4 atms. Optimum conditions for generating smaller bubbles with larger gas holdup are increased liquid flow rate, low liquid level, and high gas pressure. Experimental results also indicate that the column operates in both the homogeneous and heterogeneous regimes of gas-liquid flow.  相似文献   

12.
采用电导探针测定了冷态鼓泡塔中不同气速下的气泡直径及气含率的轴向分布,考察了分布板对鼓泡塔操作性能的影响.结果表明:随着开孔率的减小,从均匀鼓泡区到过渡区的转变提前;在均匀鼓泡区,开孔率对气泡直径影响较小;在过渡区,开孔率大的分布器形成的稳定气泡直径较小、气含率较大;分布板开孔直径越大,形成的初始气泡直径越大,但对轴向气泡直径分布的影响仅限于分布器区.包含分布器影响的气泡直径经验关联式为d/D=140.2Bo-0.5Ga-0.12Fr0.099(h/D)-0.15T-0.34(0.5 cm/s<ug<7 cm/s).  相似文献   

13.
One of the greatest challenges in the characterization of bubbles in a bubble column has been the prediction of the bubble diameter and the gas holdup. In this study a novel technique for predicting the mean bubble diameter and the local gas holdup using a non‐invasive ultrasonic method with neural network was investigated. The measurement parameters of the energy attenuation and the transmission time difference of ultrasound are used to obtain the mean bubble diameter and the local gas holdup in an air‐water dispersion system using neural network reconstruction. Bubble size distributions in a 2‐D bubble column are obtained experimentally by using a photographic method. An adequate selection of the neural network structure has been carried out to represent the training data. The representative results using the present structure show good agreement with the measured data.  相似文献   

14.
Experimental studies on the gas holdup in two tapered bubble columns using non-Newtonian pseudoplastic liquid have been reported. The effects of different variables such as gas flow rate, liquid viscosity, bed height, and orifice diameter of sieve plate on gas holdup have been investigated. An empirical correlation has been developed for the prediction of the gas holdup as a function of various measurable parameters of the system. The correlation is statistically acceptable.  相似文献   

15.
Hydrodynamic and mass transfer data in Soltrol-130 (a mixture of C9+ iso-paraffins) were measured in a 0.305 m diameter bubble column. The gas holdup structure (i.e., the contributions to holdup from the small and large bubble fractions of the dispersion) for this hydrocarbon liquid in the churn turbulent flow regime was analyzed using the dynamic gas disengagement technique. The validity of the assumption of axially uniform gas holdup structure was checked. Literature correlations were found inadequate to explain the observed gas holdup and the volumetric mass transfer coefficients for Soltrol-130. The volumetric mass transfer coefficient per unit volume of large bubbles is shown to be independent of superficial gas velocity for the fully developed churn turbulent regime. The present hydrodynamic and mass transfer data in the churn turbulent regime should be useful in the design and scale-up of bubble columns used in organic process industries.  相似文献   

16.
Local hydrodynamics of a gas–liquid–solid system,such as bubble circulation regime,gas holdup,liquid velocity and axial profile of solid concentration,are studied in a two-stage internal loop airlift reactor.Empirical correlations for gas holdup and liquid velocity are proposed to ease the reactor design and scale-up.Different bubble circulation regimes were displayed in the first(lower) and second(upper) stages.Increasing superficial gas velocity and solid loading can promote regime transition of the second stage,and the gas holdup of the second stage is higher than that of the lower stage.In addition,the effects of solid loading on bubble behaviour are experimentally investigated for each stage.It is found that bubble size in the downcomer decreases with the presence of solid particles,and bubble size distribution widens under higher superficial gas velocity and lower solid loading.  相似文献   

17.
Computational fluid dynamics (CFD) was used to simulate the effect of sparger construction in gas holdup and liquid axial velocity in a shallow bubble column reactor for the air‐water system. Model parameters were evaluated in 2‐ and 3‐D simulations by using a two‐fluid model and the standard k‐? turbulence model. The Eulerian‐Eulerian approach was employed to predict the height of column that is affected by the sparger. It was found that increasing the number of orifices in the sparger increases the total gas holdup. Moreover, each orifice causes an increase in the circulation and mixing of liquid in the column. The results of the simulations follow the trends observed in the findings of Dhotre and Joshi [1].  相似文献   

18.
The abrupt change on the curve of gas holdup vs. superficial gas velocity calculated from the dual-bubble-size (DBS) model was physically interpreted as a shift from the homogeneous and transition regimes to the heterogeneous regime for bubble columns in our previous work (Yang et al., 2007. Explorations on the multi-scale flow structure and stability condition in bubble columns. Chem. Eng. Sci. 62, 6978–6991). The fundamentals related to the DBS model and this jump change are further analyzed in this work. A conceptual analysis is performed on the momentum and energy transfer modes between phases and the partition of energy dissipation at different scales, thus the hydrodynamic equations can be closed with a stability condition formulated as a variational criterion, that is, the minimization of micro-scale energy dissipation or the maximization of meso-scale energy dissipation. Model calculation indicates that the stability condition drives the variation and evolution of structure parameters for the two bubble classes and hence causes the jump change of gas holdup which is due to the shift of the location of the global minimum point of the micro-scale energy dissipation from one ellipsoid of iso-surface to another in the 3D space of structure parameters. The stability condition brings about the compromise between small and large bubbles in that these two classes compete with each other to approach a critical diameter at which drag coefficient reaches minimum. For different liquid media, generally only one bubble class could jump to the critical diameter, except the critical state at which the roles of stabilizing and destabilizing flow reach a balance and the two bubble classes jump together to the critical diameter. This may offer a physical explanation on the dual effect of liquid viscosity and surface tension on flow stability and regime transition reported in literature, and the model calculation for this dual effect and the regime map is in reasonable agreement with experimental findings.  相似文献   

19.
The gas hold-up variation and regime transition were investigated with different liquid viscosities ranging from 1.0 mPa s to 31.5 mPa s using a 0.15-m-in-diameter bubble column. In contrast to common observations, the gas hold-up graph with the superficial gas velocity could be categorized into three flow regimes: homogeneous, pseudo-homogeneous and heterogeneous flow regimes. The formation of large bubbles caused a transition from the homogeneous to the pseudo-homogenous flow regime, in which large bubbles rose vertically without oscillatory turbulence. According to the results from the dynamic gas disengagement (DGD) technique, large bubbles began to form at the transition superficial gas velocity to the pseudo-homogeneous flow regime. The transition to a heterogeneous flow regime was initiated by the turbulent movement of large bubbles. The transition superficial velocities to pseudo-homogeneous and heterogeneous flow regimes, ut1 and ut2, decreased with increasing liquid viscosity below a critical viscosity and converged to a certain value above that viscosity. However, the correlations from the literatures could not make a reasonable estimation of the transition superficial velocities because they did not consider the possible transition to a pseudo-homogeneous flow regime. Therefore, the two transition points should be predicted separately.  相似文献   

20.
Experiments were conducted using various types of solid particles to investigate the hydrodynamic properties of a gas-liquid-solid spouted bed with a draft tube. The hydrodynamic properties under study include flow modes, pressure profile and pressure drop, bubble penetration depth, overall gas holdup, apparent liquid circulation rate and bubble size distribution. Three flow modes were classified: a packed bed mode, a fluidized bed mode and a circulated bed mode. It was found that the friction factor accounting for the friction loss in the bed varies linearly on a logarithmic scale with the Reynolds number defined based on the apparent liquid circulation rate. The bubble penetration depth in the annular region, overall gas holdup and apparent liquid circulation rate increase with an increase in gas or liquid velocity. At high gas flow conditions an optimal solids loading exists which yields a maximum apparent liquid circulation rate. A model was proposed to describe the liquid circulation behaviour in the draft tube three-phas spouted bed. The average bubble size in the draft tube region is higher than that in the annular region for both the dispersed bubble regime and the coalesced bubble regime in the draft tube region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号