首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文描述了在27.5~30.0GHz下工作的噪声系数为4.6dB、频带中心转换增益为17dB的GaAsFET接收机。为此接收机研制了一个FET三级放大器(噪声系数4.4dB,增益17.5dB),一个25GHzFET振荡器(输出功率10mW)和双栅FET混频器(转换增益3dB,噪声系数10dB)。  相似文献   

2.
据报导,在不久前举行的微波和毫米波单片电路国际会议上,得克萨斯仪器公司等不少厂家认为,GaAs毫米波集成电路已趋于成熟,很快将会进入实用阶段。与会者以12GHz DBS接收机前端用的GaAs毫米波电路为例说明了这一点。这种电路由1个低噪声放大器、1个双栅FET混频器以及1个稳定的本机振荡器组成。放大器的噪声为3.6dB、增益为7.3dB,覆盖了11.7~12.5GHz的频段;混频器的噪  相似文献   

3.
研制了用于直播卫星接收机的12GHz波段GaAs双栅MESFET单片混频器。为了缩小芯片面积,把一个缓冲放大器直接与混频器的中频端口连接,而不采用中频匹配电路。混频器和缓冲放大器分开制造在两个芯片上,以便单独测量。混频器芯片尺寸为0.96×1.26mm~2,缓冲放大器芯片尺寸为0.96×0.60mm~2。混频器的双栅FET,以及缓冲放大器的单栅FET的电极间距很小。栅长和栅宽各1μm和320μm。在11.7~12.2GHz,带有缓冲放大器的混频器提供转换增益为2.9±0.4dB,单边带噪声系数12.3±0.3dB。本振(LO)频率为10.8GHz。低噪声变频器由单片前置放大器、镜象抑制滤波器,以及单片中频放大器与混频器连接构成。在同一频段,变频器提供转换增益为46.8±1.5dB,单边带噪声系数为2.8±0.2dB。  相似文献   

4.
用于直播卫星接收机中的12GHz频段GaAs双栅MESFET单片混频器已经研制成功。为了减小芯片尺寸,缓冲放大器直接连在混频器的中频输出端后面,而不采用中频匹配电路。混频器和缓冲器制作在各自的芯片上,以便能分别测量。混频器芯片尺寸是0.96×12.6mm,缓冲器芯片尺寸是0.96×0.60mm。用于混频器的双栅FET和用于缓冲器的单栅FET都具有间隔紧密的电极结构。栅长和栅宽分别是1μm和320μm。带有缓冲放大器的混频器在11.7~12.2GHz射频频段提供2.9±0.4dB变频增益和12.3±0.3dB单边带(SSB)噪声系数。本振频率是10.8GHz。将一个单片前置放大器、一个镜象抑制滤波器和一个单片中频放大器与混频器连接起来构成低噪声变频器。变频器在上述频段内提供46.8±1.5dB的变频增益和2.8±0.2dB单边带噪声系数。  相似文献   

5.
报道了工作频率分别为10.7-11.6GHz和11.7-12.2GHzGaAs单片接收机的研制结果。接收机并包括四种电路,即低噪声效大器、介质稳频振荡器、混频器和中频放大器。电路均采用GaAs全离子注入平面工艺创作,并封装在金属管壳内测试.10.7-11.6GHz接收机的噪声系数达到3.5dB,增益大于35dB;11.7-12.2GHz接收机的噪声系数可达到4dB,增益大于31dB。  相似文献   

6.
《无线电通信技术》2019,(6):638-642
设计一款工作在W波段的辐射计SOC芯片。该芯片采用商用0.1μm栅长的GaAs pHEMT工艺;内部集成低噪声放大器,IQ输出的零中频电阻混频器以及6倍频本振链。测试结果显示,该芯片工作频率为85~110 GHz,中频带宽大于10 GHz,本振需求低于16 GHz&6 dBm;工作频带内整个接收机电路的变频增益大于7 dB,特别在98~105 GHz频带内平坦度优于±0.5 dB。此外,该芯片实现了优于35 dBc的镜频抑制,极大降低了接收电路前级滤波器的需求。  相似文献   

7.
雷达数字中频接收机需要一个线性中频预放大电路和一个监测用的对数中频放大器。采用射频变压器形成输入匹配网络,采用高性能低噪声宽带差分放大器AD8350作为线性放大器件,采用双调谐回路作为选频网络,采用魔T电路构成功率分配网络,采用高动态范围宽带对数放大器AD8309作为对数放大器件,设计了一个兼具线性和对数特性的中频放大器。实验表明,该放大器中频输入输出阻抗50Ω,中心频率30 MHz,带宽4 MHz。线性通道增益为18 dB,输出动态范围达98 dB(1 dB压缩点-90 dBm和+8 dBm)。对数通道中,在输入功率为-68 dBm~-8 dBm时,对数放大器输出电压范围对应为0.19 V~2.06 V。  相似文献   

8.
采用GaAs单片微波集成电路(MMIC)技术,研制出用于直播卫星(DBS)家庭接收机的12GHz低噪声放大器(LNA)、1GHz中频放大器(JFA)以及11GHz介质谐振振荡器(DRO)。每一个单片集成电路芯片都包含有源元件FET,以及单电源工作所需的自偏置源电阻和旁路电容。它还包含隔直电容和射频旁路电容。三级LNA在11.7~12.2GHz范围内具有3.4dB噪声系数和19.5dB增益。三级负反馈型的IFA在0.5~1.5GHz范围内,其噪声系数和增益分别为3.9dB和23dB。介质谐振振荡器(DRO)在10.67GHz频率上给出10mW的输出功率,在-40~+80℃的温度范围内频率稳定度为1.5MHz。由这些单片微波集成电路(MMIC)构成的直播卫星接收机,在11.7~12.2GHz内总噪声系数≤4dB。  相似文献   

9.
基于RC-CR多相网络技术研制了一款S波段镜频抑制接收机单片微波集成电路(MMIC),在MMIC芯片上集成S波段低噪声放大器(LNA)、差分IQ混频器、本振(LO)驱动放大器、RC-CR多相网络滤波器等电路单元,实现了S波段单片镜频抑制接收机,解决了镜频接收机小型化的问题.电路、电磁场软件仿真以及采用GaAs赝配高电子迁移率晶体管(PHEMT)工艺流片后的结果表明,在S波段实现了噪声系数小于1.8 dB,增益大于12 dB,中频(150±5) MHz带内镜频抑制大于35 dBc的技术指标.MMIC的芯片尺寸为4.8 mn×2.5 mm×0.07 mm.此镜频抑制接收机MMIC具有指标优异、体积小、集成度高的特点,可广泛用于各种需小型化的相控阵雷达和通信系统中.  相似文献   

10.
<正> 一、引言由于 GaAs FET 的基本器件结构和固有的良好线性特性,已经表明把有源元件和无源元件集成在同一晶片上,来实现在微波频段工作的小信号放大器是可能的和现实的。这种电路最初是用小栅宽的器件制造 C、X 和 Ku 波段单片宽带单级放大器而被证实的,最近,注意力已集中到实现主要用于功率放大器并集成较大栅宽的 FET GaAs 单片电路上。单级和两级单片放大器已工作在 X 波段,具有中等带宽,其输出功率超过1瓦,增益高达12dB。  相似文献   

11.
文中采用SMIC 0.18μm CMOS工艺设计了适用于芯片间光互连的的接收机前端放大电路,将跨阻放大器(TIA)和限幅放大器(LA)集成于同一块芯片中.跨阻放大器采用调制型共源共栅(RGC)结构来提高其带宽,限幅放大器采用二阶有源反馈结构和有源电感负载来获得高的增益带宽积.整个接收机前端放大电路具有85dB中频增益,-3dB带宽为4.36GHz.芯片的面积为1mm×0.7mm,在1.8V电源电压下功耗为144mW.  相似文献   

12.
我们研制了一种普通封装的GaAs FET 和高Q介质谐振器的共漏振荡器。这种共漏振荡器采用FET沟道反向的办法,利用自身的栅源电容构成反馈电路,省去了复杂的外反馈网络;还采用了高Q介质谐振器作成反射型的稳频电路,解决了频率稳定度的问题。这种振荡器结构简单、调试方便,在4~6GHz范围内输出功率大于300mw,效率超过30%,机械调谱带宽大于100MHz;在-40~+70℃温度范围内,频漂小于±O.6MHz,频温系数为2×lO~6/l℃。  相似文献   

13.
本文根据GaAs MESFET单片行波放大器的原理,研制了一种新型宽带单片混频器.混频电路制在厚为0.1mm,面积为2.7×1.8mm的GaAs基片上,RF和LO分别通过等效特性阻抗为50Ω的G_1线和G_2线进入混频电路,且这两个频率在4个GaAs双栅MESFET(DGFET)中混频.这种MMIC混频器在中频频率为1.0GHz.射频频率在2~12GHz范围内得到约为8.5dB的变频损耗(无中频匹配电路),其平坦度约为±0.6dB.这一结果有助于进一步研究与实现单片宽带微波接收机.  相似文献   

14.
研究了一个两级GaAs FET单片放大器,频率在0.3~1.5GHz内,噪声系数为2dB、增益为20dB。信号源阻抗为50Ω情况下,为了降低噪声系数,FET的栅宽选择最佳值为1mm。为了减小芯片尺寸,采用直接耦合电路。为了实现平面结构,所有的电路元件的制作,侧如FET、肖特基二极管和电阻都采用选择离子注入方法。  相似文献   

15.
采用分布式放大器设计原理,基于GaAs PHEMT低噪声工艺技术,研制了一款超宽带低噪声放大器单片电路。该款放大器选用分布式拓扑结构,由五级电路构成,为了进一步提高分布式放大器的增益,在每一级又采用了两个场效应晶体管(FET)串联结构。放大器采用了自偏压单电源供电,因为每级有两个FET串联,自偏压电路更为复杂,通过多个电阻分压的方式确定了每个FET的工作点。测试结果表明,该放大器在频率4~20 GHz内,增益大于14 dB,噪声系数小于3.0 dB,增益平坦度小于±1.0 dB,输入驻波比小于1.5∶1,输出驻波比小于1.8∶1,1 dB压缩点输出功率大于10 dBm。放大器的工作电压为8 V,电流约为50 mA,芯片面积为2.0 mm×2.0 mm。  相似文献   

16.
介绍了一款采用TDA7088T的新型调频接收机,其主要优点是将混频器、中频放大器、立体声解调器以及静噪电路、选频电路和振荡电路集成在一起,同时还有自动频率控制和电子调谐等功能。重点介绍了这种接收机的设计思路和工作原理以及各相关部分的特性。  相似文献   

17.
介绍了一款采用TDA7088T的新型调频接收机,其主要优点是将混频器、中频放大器、立体声解调器以及静噪电路、选频电路和振荡电路集成在一起;同时还有自动频率控制和电子调谐等功能。重点介绍了这种接收机的设计思路和工作原理以及各相关部分的特性。  相似文献   

18.
基于0.18μm RF CMOS工艺,设计了一种全集成的接收信号强度指示计(RSSI)电路.该电路片内集成了限幅放大器,全波整流器,失调减法器,直流失调提取电路和输出缓冲器.该RSSI电路提供放大后的中频输出以及指示输入信号强度的RSSI电压输出.通过在直流失调提取电路中应用微电流偏置的跨导放大器,大幅减小了版图面积,提高了集成度,降低了成本.这种RSSI电路不仅适合低中频接收机,尤其适合于零中频应用.测试结果表明,电路实现了55dB的输入线性检测范围,同时占用版图面积为0.033mm2,功耗为3.1mA.  相似文献   

19.
<正> 利用GaAs FET双栅芯片,在30×40mm的复合介质基片上,根据计算机优化结果,制作了三级双棚GaAs FET可变增益放大器。在2.2~3.7GHz频率范围内,典型小信号增益大于25dB;在2.5~3.0GHz频段,最高增益为36dB,典型平坦度为±0.7dB。改变第二栅偏置电压,放大器增益连续可变,典型动态增益范围为70dB。该放大器开关时间小于10ns。可用作高速调制器、高速开关。双栅GaAs FET芯片塑料封装,单电源供电(除二栅),使用方便,稳定可靠,初步试用已显示出它具有应用前景。  相似文献   

20.
介绍了一种应用于气体频谱分析传感器的低功耗245 GHz次谐波接收机,该接收机具有低功耗、高线性度和高集成度的特点.该接收机由四级共基极低噪声放大器、二次次谐波无源反接并联二极管对(APDP)混频器、120GHz推推型压控振荡器-分频器链路、120 GHz功率放大器和中频放大器构成,采用了特征频率为300 GHz、最大振荡频率为500 GHz的锗硅BiCMOS工艺实现.该接收机芯片实现了10.6 dB的转换增益和13 GHz的带宽,噪声系数为20 dB,输入1dB压缩点仿真结果为-9 dBm,接收机如果不包括120 GHz压控振荡器-功率放大器链路功耗为99.6 mW,接收机包括120 GHz压控振荡器-功率放大器链路功耗为312 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号