首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
实际的转子由于力学模型的建立,诸如支承刚度等的确定存在一些困难,因此单纯依据计算或试验难以精确地确定临界转速。本文采用试验-解析法确定某试验转子的一阶临界转速,并采用传递矩阵法计算转子的各阶纯弯曲临界转速和弯、扭耦合临界转速,以及各阶临界转速的位能分配。  相似文献   

2.
采用传递矩阵法计算转子-机匣系统的临界转速、不平衡响应及初始弯曲响应,计算转子-机匣系统临界转速及稳态响应时的位能与位能分配,提出了借助转子-机匣的位能分配判断各阶临界转速的分析方法,并研究了机匣对系统振动特性的影响。  相似文献   

3.
转子的临界转速可靠性分析对实际工程具有重要意义,文中针对某型号的汽轮机转子进行临界转速分析。对转子的轴段进行有限元网格划分后,利用DYNROT软件计算转子的各阶临界转速。在假定转子轴承支承刚度不确定,而是按照正态分布的前提下,利用转子频率可靠性理论,进一步计算了转子临界转速的可靠度。  相似文献   

4.
采用求解转轴系统弹性线的微分方程和应用累试法计算了多转子悬臂轴系统的各阶临界转速,计算结果与实测结果基本吻合。  相似文献   

5.
高速齿轮转子应用广泛,其动态特性影响着齿轮箱的运转稳定性和可靠性。通过Romax软件,对两种振动异常的高速齿轮转子进行动态分析,得到了两种转子的各阶固有频率,以及轴承支撑参数对各阶固有频率的影响。发现改进前两高速齿轮转子的运行转速接近1阶临界转速,同时在Romax中对轴系结构进行改进,使其工作转速远离临界转速;改进后试验表明,两转子各振动指标正常,齿轮箱运转良好;为高速齿轮转子的临界转速计算提供了一种精确有效的方法。  相似文献   

6.
本文针对支承动刚度对某涡轴发动机燃气发生器转子临界转速的影响进行了研究。采用实体单元建立了某涡轴发动机燃气发生器转子支承系统的有限元分析模型,运用ANSYS软件对支承系统的静刚度和动刚度进行了计算,随后计算了燃气发生器转子在静刚度和动刚度条件下的临界转速,并对临界转速进行了对比分析。研究表明:支承动刚度使转子的各阶临界转速均有不同程度的下降。因此,在使用静刚度进行转子系统临界转速设计时应再预留一定的裕度。  相似文献   

7.
利用ANSYS中的旋转结构分析模块对转子系统进行动力特性分析,特别是对不同结构的转子进行了临界转速的计算。在某种程度上,转子系统受到的激励载荷与转子系统的特性都与转速相关,因此确定转子的临界转速就显得十分重要。利用梁单元和弹簧单元建立了转子有限元模型,通过临界转速图谱法和同步响应法确定了转子的临界转速。  相似文献   

8.
以JP60C型车用增压器涡轮叶轮为研究对象,基于有限元分析的转子动力学分析软件DyRoBeS,对减重前后的增压器转子进行了临界转速分析;采用快速成型技术加工了蜡模,浇铸了减重优化的涡轮叶轮,对装配好的增压器进行了高速动平衡试验。分析及试验结果表明,由于涡轮重量的减轻降低了转子的柔性,减重优化后的轴承-转子系统的临界转速有所降低,但其工作转速仍工作在2阶临界转速和3阶临界转速之间,涡轮减重后增压器工作转速远离转子各阶临界转速,从而说明涡轮减重优化的合理性和有效性。  相似文献   

9.
微型涡喷发动机工作转速高,其二阶或三阶临界转速往往在其工作转速之内。阐述了一种不增加额外装置而调整微型涡喷发动机转子系统临界转速的方法。首先采用有限元法对转子系统进行临界转速计算,并通过试验数据修正计算模型。然后对影响临界转速的要素进行敏感度计算,从中确定几个对临界转速影响较大的要素,并对其进行调整就可以达到调整临界转速的目的,具有方向明确,节省时间的特点。  相似文献   

10.
针对涡轴发动机由于燃发转子零部件多、转速高、流固热耦合导致振动特性复杂,难以通过整机试验揭示振动特性机理的问题,在结构相似的基础上,采用相似设计基本理论,提出通过各阶临界转速之比相等和振型相似的涡轴发动机模拟转子实验台的设计方法.首先阐述了相似设计理论并推导出转子系统质量、刚度和固有频率之间的相似关系表达式.然后以某型涡轴发动机燃发转子模拟实验台设计为例,在其工作转速的基础上,依照各阶临界转速之比相等与振型相似的设计原则,对涡轮盘、转轴、弹性支撑等模拟转子结构件进行反求等效设计,从而构建出同原型机动力学特性相似的模拟转子有限元模型,分析其前3阶临界转速及对应的振型,与原型机相应临界转速值最大误差为3.5%.最后通过试验测试该模拟转子实验台临界转速与振动响应,验证了该相似设计方法的正确性.该方法可拓展到类似转子结构的设计过程.  相似文献   

11.
柴油机涡轮增压器转子一阶临界转速的确定对它的设计和故障诊断都具有重要的意义。利用解析法和有限元法分别对其一阶临界转速进行计算,并将计算结果与实测数据相比较,结果表明,有限元法在计算复杂转子临界转速方面更接近工程实际。  相似文献   

12.
临界转速是各类高速旋转机械一个重要参数,以弹性支承的悬臂转子为研究对象,分别采用传统公式法和基于有限元ANSYS软件对其求临界转速,再利用转子动力学专业软件SAMCEF进行分析该转子的临界转速,把三种方法求得的数值进行分析比较,结果表明转子动力学专业软件SAMCEF对转子临界转速的计算准确性更高,计算更为方便,为工程实践计算转子临界转速提供了很好的工具。  相似文献   

13.
各向异性支承的分布质量转子系统的稳定性分析   总被引:1,自引:0,他引:1  
某燃气轮机高压涡轮是一个带有24个轮盘的分布质量转子系统,具有不对称的支承特征.文中首先采用集中质量和无质量弹性轴段进行建模,根据设计要求引入两个各向异性弹性支承,构建具有25个轴段的集总质量转子系统动力学模型.给出了用Riccati传递矩阵法计算该转子系统复频率的算法,计算得到各阶临界转速.利用对数减幅率判据对转子系统的稳定性进行判定,讨论了转速等因素对各阶模态下转子系统稳定性的影响.所得结果为该复杂转子系统的动力学设计提供了依据.  相似文献   

14.
采用有限元法对某变频电机转子进行了模态分析,计算得到了转子的临界转速、固有频率和振型.通过临界转速和振型图分析了转子的振动特性.计算结果表明,转子的设计具有良好的结构刚度,转子系统临界转速安全系数合理.最后对比了有限元法和传递矩阵法的临界转速计算结果,证实了有限元法的准确性.  相似文献   

15.
柔性转子不平衡响应及初始弯曲振动特性研究   总被引:5,自引:1,他引:4  
以悬臂式热弯曲转子、Jeffcott转子、双简支光轴转子为对象研究单转子初始弯曲及不平衡响应的振动特性 ,采用传递矩阵法计算了临界转速、初始弯曲响应及不平衡响应 ,得出了普遍的规律。计算了双简支等截面光轴转子偏心距按各阶振型分布的不平衡响应 ,证实了柔性转子振动主振型正交性的性质 ,介绍了一套有助于柔性转子模态平衡法理论分析的通用程序  相似文献   

16.
为了保障多轮盘转子系统的稳定性,针对多轮盘转子临界转速的确定问题,分别采用了邓柯莱法,传递矩阵法和基于ANSYS的有限元法进行求解,并对所得结果进行了分析和比较。结果表明三种方法的适用范围不同,其中基于ANSYS的限元法对转子系统的临界转速的求解准确度高,计算简便,为工程上其它转子系统的临界转速的求解提供了可靠的依据。  相似文献   

17.
建立了大型屏蔽电机泵转子系统的集总参数模型,并采用Riccati传递矩阵法对转子系统的临界转速及振型进行了计算。计算结果表明:(1)采用Riccati传递矩阵法编制的转子系统临界转速求解程序计算稳定,计算精度足够高;(2)大型屏蔽电机泵转子系统的临界转速为设计超速的1.2倍,能够有效避开工作转速,设计裕量足够;(3)在正常工作下,转子系统上、下飞轮处为振动敏感部位,应重点监测,以免和承压壳体发生碰磨。  相似文献   

18.
对多转子组合系统与原各转子频率间的关系进行了理论推导。总结了国产600MW亚临界机组轴系各阶临界转速及其振型与单个转子临界转速间的关系,为轴系的设计和机组现场动平衡提供了理论依据。  相似文献   

19.
为探究某型起动机转子悬臂支撑结构设计的合理性,利用有限元软件ANSYS对比分析了轴承的支承刚度和支点跨距对转子的模态、临界转速及不平衡响应的影响.分析结果表明:当支承刚度增加时,转子各阶固有频率和一阶临界转速均增加,高阶固有频率和振幅增加显著;当支点跨距增加时,转子各阶振型和振幅无明显变化,各阶固有频率略有增加,一阶临...  相似文献   

20.
本文用转子动力学分析软件DYNAMICS计算了两种气体轴承支撑的不同结构的透平膨胀机转子系统的临界转速,并与ANSYS计算结果和实验数据进行了对比。ANSYS与DYNAMICS对两种材质(铍青铜、不锈钢)双层鼓泡箔片动压轴承支撑的Φ_1=25mm双盘转子系统前4阶临界转速计算结果差异较大,随转速提高差异较低,5,6两阶临界转速计算结果差异小于1%,DYNAMICS对临界转速计算结果与转子非同步涡动振动频率实验值基本吻合。ANSYS与DYNAMICS对小孔供气静压轴承支撑的Φ_2=17mm单盘转子系统各阶临界转速差异均小于2%,DYNAMICS对临界转速计算结果略大于实验结果。ANSYS计算Φ_1=25mm双盘转子系统耗时分别为109s和105s,计算Φ_2=17mm单盘转子系统耗时约70s,DYNAMICS计算耗时均小于1s。通过对两种结构转子系统的计算对比,表明DYNAMICS计算准确度高,运算速度快,适用于多种转子、轴承系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号