首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis and photophysical/electrochemical properties of triphenylamine (TPA)-based multiple electron acceptor dyes (TPAR1, TPAR2, and TPAR3) as well as their applications in dye-sensitized solar cells (DSSCs). In these dyes, the TPA group and the rhodanine-3-acetic acid play the role of the basic electron donor unit and the electron acceptor, respectively. It was found that introduction of two rhodanine-3-acetic acid groups into the TPA unit (TPAR2) exhibited better photovoltaic performance due to the increase with a red shift and broadening of the absorption spectrum. The monolayer of these TPA-based dyes was adsorbed on the surface of nanocrystalline TiO2 mesoporous electrode with the thickness of ∼6 μm, polyethylene oxide (PEO) used as the matrix of gel electrolyte, and 4-nm thick Pt used as a counter-electrode. Photovoltaic device can be realized in a single quasi-solid-state DSSC. TPAR2-based gel DSSC had an open circuit voltage and short circuit current density of about 541 and 10.7 mA cm−2, respectively, at 1-sun.  相似文献   

2.
Two novel trivalent metal porphyrin dyes, PMn-HT-SCN and PGa-HT-SCN, were designed, synthesized and firstly applied in dye-sensitized solar cells (DSSCs). These two dyes possess porphyrin donor modified with manganese (III) and gallium (III) as coordination metal and NCS as the second ligand, cyanoacrylic acid as electron-accepting moiety and 4-hexylthiophene as π-spacers. Each of the porphyrin showed different adsorption behavior and saturated coverage on the TiO2 surface. Between the two dyes, the PMn-HT-SCN-based DSSCs afforded the best photovoltaic performance: a short-circuit photocurrent density (Jsc) of 4.32 mA/cm2, an open-circuit photovoltage (Voc) of 0.61 V and a fill factor (FF) of 0.58, corresponding to a solar-to-electricity conversion efficiency of 1.53% under 100 mW/cm2 irradiation.  相似文献   

3.
Two novel dyes TPAR3 and BTDR2 based on triphenylamine and benzothiadiazole, respectively, with multiple electron acceptors were synthesized and characterized by FT-IR, 1H NMR, TGA and thermomechanical analysis (TMA). They carried terminal cyanoacrylic acid electron acceptors/anchoring moieties, which were connected with the central unit through a thiophene ring. The absorption bands of the dyes were extended up to ∼570 nm with long-wave absorption maximum at 425-455 nm and optical band gap of 2.10-2.17 eV. The dyes emitted yellow-orange light with photoluminescence maximum at 547-615 nm. We have investigated the photovoltaic properties of quasi solid state dye sensitized solar cells (DSSCs) based on these metal free organic dyes. It has been found that the power conversion efficiency of the DSSCs based on composite zinc titanium oxide (ZTO) nanocrystalline photoelectrode is higher than that for TiO2 based DSSCs. This has been attributed to the longer electron lifetime and more negative conduction band edge of ZTO. The overall power conversion efficiency of the DSSCs based on TPAR3 and BTDR2 employing ZTO photoelectrode is 6.3% and 3.6%, respectively. These results indicate that both the acceptor moiety of metal free organic dyes and ZTO photoelectrode have an effect on the photovoltaic performance of DSSCs.  相似文献   

4.
A new series of low band gap dyes, C1, C2 and S, based on 2-styryl-5-phenylazo-pyrrole was synthesized. These dyes contain one carboxy, two carboxy and one sulfonic acid anchoring groups, respectively. They were soluble in common organic solvents, showed long-wavelength absorption maximum at ∼620 nm and optical band gap of 1.66-1.68 eV. The photophysical and electrochemical properties of these dyes were investigated and found to be suitable as photosensitizers for dye sensitized solar cells (DSSCs). The quasi solid state DSSCs with dye S showed a maximum monochromatic incident photon to current efficiency (IPCE) of 78% and an overall power conversion efficiency (PCE) of 4.17% under illumination intensity of 100 mW cm−2 (1.5 AM), which is higher than the other dyes (3.26% for C2 and 2.59% for C1). Even though dye S contains one sulfonic acid anchoring group, the higher PCE for the DSSCs based on this dye has been attributed to the higher dye loading at the TiO2 surface and enhanced electron lifetime in the device, as indicated by absorption spectra and electrochemical impedance spectra measurements. Finally, by increasing the molecular weight of poly(ethylene oxide) (PEO) in electrolyte, the PCE also increases up to 4.8% for the electrolyte with PEO molecular weight of 2.0 × 106. This improvement has been attributed to the enhancement in iodide ions diffusion due to the increase in free volume of polymer gel electrolyte.  相似文献   

5.
Three organic dyes with D-π-D-π-A structure based on triarylamine, dimethylarylamine, and rhodanine-3-acetic acid moieties are designed and synthesized. Incorporating thiophene moieties into the system affords sensitizers with high molar extinction coefficients. These dyes were applied into nanocrystalline TiO2 dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 73%, with a short-circuit photocurrent density (Jsc) of 7.3 mA/cm2, an open-circuit voltage (Voc) of 636 mV, and a fill factor (ff) of 0.61, corresponding to an overall conversion efficiency (η) of 2.86%.  相似文献   

6.
Natural dye‐sensitized solar cells (DSSCs) are becoming promising candidates for replacing synthetic dyes. Anthocyanins, a flavonoid pigment which is responsible for the coloration in fruits and flowers, have shown productive results in employing them as natural dye for DSSC. But unfortunately, they exhibit low efficiency compared with synthetic dyes. Probing the reasons for the low efficiency of anthocyanin paves way for finding solution to increase the efficiency. This paper lists the important factors that are responsible for anthocyanin instability in DSSC. As a remedial measure, this paper introduces two buffer layer made of algal byproducts—sodium alginate and Spirulina. Rutile phase TiO2 nanorods prepared by hydrothermal method were used as photoelectrode and are subsequently characterized by X ray diffraction, transmission electron microscopy, and optical studies. The use of sodium alginate above the photoelectrode has proved to improve the dye concentration in the film by introducing more hydroxyl groups on the surface of TiO2. Anthocyanins extracted from rose petals using citric acid as solvent were used as dye for DSSC. Prior to the sensitization process with anthocyanin dye, the TiO2 film (with sodium alginate) was sensitized with Spirulina. The chlorophylls, xanthophylls, phycocyanins, and amino acids present in Spirulina assist the anthocyanins to bond with TiO2 efficiently. This helps in enhancing the efficiency of anthocyanins of rose dye from 0.99% to 1.47%.  相似文献   

7.
Natural dyes extracted from fruits, vegetables, flowers, and leaves are considered as promising alternative sensitizers to replace synthetic dyes for dye‐sensitized solar cells (DSSCs). Generally, solar activity of natural dyes stem from anthocyanin pigment. Carbonyl, carboxyl, and hydroxyl groups present in the anthocyanin molecule improve the adsorption ability of dye on TiO2 and therefore facilitate charge transfer. Here, for the first time, novel natural dyes extracted from St. Lucie cherry, yellow jasmine, and madder berries are reported to act as sensitizer in DSSCs. These novel natural dye extracts are prepared by dissolving related fruits in ethanol. The ingredient of the dyes is identified by FT‐IR spectroscopy. Accordingly, FT‐IR spectrum reveals that novel natural dye extracts exhibit all the characteristic peaks of anthocyanin pigment. Specifically, St. Lucie cherry consists of more distinct carbonyl group than other sources. Also, photoanodes composed of three TiO2 layers are prepared by using a spin‐coating method. Then, they are immersed into natural dyes and analyzed by conducting UV‐Vis spectroscopy. Compared with bare TiO2, natural dye–loaded photoanodes demonstrate far higher absorption ability in the visible region. After fabrication of devices with different novel natural dye sensitizers, current‐voltage characteristics and electrochemical impedance spectroscopy measurements are performed. The best power conversion efficiency (PCE) of 0.19% is obtained by sensitization of St. Lucie cherry with an open‐circuit voltage (Voc) of 0.56 V, short‐circuit current density (Jsc) of 181 μA cm?2, and fill factor (FF) of 0.55. Furthermore, St. Lucie cherry–sensitized devices show the lowest charge transfer and highest recombination resistances. This result can be attributed to the obvious carbonyl group exhibited by St. Lucie cherry.  相似文献   

8.
We report the preparation of nanoporous TiO2 electrode modified with an insulating material—BaCO3 and used as electrode for quasi solid state dye sensitized solar cells (DSSCs), with a benzothiadiazole-based dye (BTDR2) as sensitizer and PEDOT:PSS coated FTO as counter electrode. We found that the BaCO3 modification significantly increases the dye adsorption, resulting from the fact that the surface of BaCO3 is more basic than TiO2. The performance of the DSSCs with and without BaCO3 modified TiO2 electrodes were analyzed by cyclic voltammograms, optical absorption spectra, current-voltage characteristics in dark and under illumination and electrochemical impedance spectra. The photovoltaic performance has been significantly improved for the BaCO3 modified electrode as compared to bare TiO2 electrode having the same other components in the DSSCs. The value of the overall power conversion efficiency (η) improves from 2.42% to 4.38% under illumination intensity, when BaCO3 modified electrode is used instead of bare TiO2 electrode. The improvement in η has been attributed to the increased dye adsorption, reduction in recombination rate and enhancement in the electron lifetime when the modified TiO2 electrode is used.  相似文献   

9.
We have developed dye-sensitized nanocrystalline TiO2 solar cells (DSSCs) based on novel coumarin-dye photosensitizers. The absorption spectra of these novel dyes are red-shifted remarkably in the visible region relative to the spectrum of C343, a conventional coumarin dye. Introduction of a methine unit (–CH=CH–) connecting the cyano (–CN) and carboxyl (–COOH) groups into the coumarin framework expanded the π-conjugation in the dye and thus resulted in a wide absorption in the visible region. These novel dyes performed as efficient photosensitizers for DSSCs. A DSSC based on 2-cyano-5-(1,1,6,6-tetramethyl-10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-aza-benzo[de]anthracen-9-yl)-penta-2,4-dienoic acid (NKX-2311), produced a 6.0% solar energy-to-electricity conversion efficiency (η), the highest performance among DSSCs based on organic-dye photosensitizers, under AM 1.5 irradiation (100 mW cm–2) with a short-circuit current density (Jsc) of 14.0 mA cm–2, an open-circuit voltage (Voc) of 0.60 V, and a fill factor of 0.71. Our results suggests that the structure of NKX-2311 whose carboxyl group is directly connected to the –CH=CH– unit, is advantageous for effective electron injection from the dye into the conduction band of TiO2. In addition, the cyano group, owing to its strong electron-withdrawing ability, might play an important role in electron injection in addition to a red shift in the absorption region. On a long-term stability test under continuous irradiation with white light (80 mW cm–2), stable performance was attained with a solar cell based on the NKX-2311 dye with a turnover number of 2.6×107 per one molecule.  相似文献   

10.
Three anthraquinone dyes with carboxylic acid as anchoring group are designed and synthesized as sensitizers for dye-sensitized solar cells (DSSCs). Preliminary photophysical and photoelectrochemical measurements show that these anthraquinone dyes have very low performance on DSSC applications, although they have broad and intense absorption spectra in the visible region (up to 800 nm). Transient absorption kinetics, fluorescence lifetime measurements and density functional theory (DFT) calculations are conducted to investigate the cause of such low DSSC performance for these dyes. The results show that the strong electron-withdrawing character of the two carbonyl groups on anthraquinone framework may lie behind the low performance by suppressing the efficient electron injection from the dye to the conduction band of TiO2.  相似文献   

11.
Novel iminocoumarin dyes (2a-c and 3a-c) having carboxyl and hydroxyl anchoring groups onto the dyes skeletons have been designed and synthesized for the application of dye-sensitized nanocrystalline TiO2 solar cells (DSSCs). The photophysical and electrochemical studies showed that these iminocoumarin dyes are suitable as light harvesting sensitizers in DSSC application. The dyes having carboxyl and hydroxyl anchoring groups (2a-c) showed better efficiency when compared to the dyes having carboxyl group (3a-c) alone. The cell consisted of dye 2a generated the highest solar-to-electricity conversion efficiency (η) of 0.767% (open circuit voltage (Voc) = 0.491 V, short circuit photocurrent density (Jsc) = 2.461 mA cm−2, fill factor (ff) = 0.635) under simulated AM 1.5 irradiation (1000 W m−2) with a total semiconductor area of 0.25 cm2. The corresponding incident photon-to-current conversion efficiency (IPCE) of the above cell was 21.38%. The overall low efficiency of the dyes is ascribed to the lack of light harvesting ability at longer wavelength region.  相似文献   

12.
The effects of deoxycholic acid (DCA) in a dye solution as a co-adsorbate and guanidinium thiocyanate (GuSCN) in an electrolyte as an additive, on the photovoltaic performance of dye-sensitized solar cells (DSSCs) based on organic dye containing thiophene and fluorine segments (FL dye1) and black dye (BD) were investigated. The presence of DCA, up to 2 mM, increases both the photovoltage and photocurrent of the DSSC incorporating BD and further addition leads to decrease in the photocurrent. On the other hand, in the case of the DSSC containing FL dye1, the photocurrent decrease and photovoltage increase with the increase of DCA concentration. The pulsed laser measurement showed that electron lifetime (τe) of BD is higher than that of FL dye1 on a TiO2 electrode and the electron diffusion coefficient (De) of the latter is higher than that of the former where there is little deviation for both τe and De with the addition of the DCA. The addition of GuSCN into electrolytes does enhance the photovoltage for DSSCs containing either FL dye1 or BD. This can be explained by the further adsorption of guanidinium cations following the dye adsorption that facilitates the self-assembly of dye molecules so as to either reduce the dark current or positively shift the conduction band edge of the TiO2. The value of τe increases and the value of De decreases as a result of GuSCN addition.  相似文献   

13.
Various kinds of cyanine and merocyanine organic dyes having short anchoring groups as sensitizers on nanocrystalline TiO2 electrodes were investigated to promote the short-circuit photocurrent (Jsc) and the solar light-to-power conversion efficiency (ηsun). The Jsc and ηsun improved when the three different three dyes (yellow and red cyanine dyes, and blue squarylium cyanine dye) were adsorbed simultaneously on a TiO2 electrode, as compared with the Jsc and ηsun of the TiO2 electrodes adsorbed by each single dye. The maximum ηsun was 3.1% (AM-1.5, 100 mW/cm2). The Jsc and ηsun were influenced by the solvents for the dye adsorption on the TiO2 electrode, and the efficiencies were improved by the addition of some cholic acids into the dye solution for adsorption. The electron transfer and/or the energy transfer from the red cyanine dye to the blue cyanine dye was observed on a SiO2 film using emission spectroscopy, suggesting a strong interaction between two dyes. The J-like aggregates of the blue cyanine dyes hardly showed sensitization efficiency.  相似文献   

14.
In this study, the chlorophyll and anthocyanin natural dyes were extracted from Cymbopogon schoenanthus leaves and Ixora coccinea flowers, respectively. Thereafter, these dyes were used as sensitizers in the TiO2‐based dye‐sensitized solar cells (DSSCs). Ten solvents were used for solubilizing the dyes. Amongst the 10 solvents, the ethanol showed the highest absorption spectra for the anthocyanin and chlorophyll molecules. Temperature significantly affected the yield of the natural dyes. It was seen that an optimal extraction temperature of 70°C and 80°C results to higher anthocyanin and chlorophyll yields, respectively. However, an extraction temperature above 70°C and 80°C has shown a sharply decrease in the anthocyanin and chlorophyll concentrations, respectively. Also, the solution of acidic extraction, especially with a pH value of 4, increased the dyes concentrations. As seen in the results, the chlorophyll‐sensitized DSSCs had 0.23% conversion efficiency (?), short‐circuit current (Isc) of 0.9 mA/cm–2, open‐circuit voltage (Voc) of 0.51 V, and 49.13% fill factor (FF). Meanwhile, the anthocyanin‐sensitized DSSCs showed 0.16% ?, 0.4 mA/cm–2 Isc, 0.53 V Voc, and 75.93% FF.  相似文献   

15.
The ionic conductivities and performances of dye-sensitized solar cells (DSSCs) of gel polymer electrolytes (GPEs) prepared by in situ cross-link reaction with different cross-linkers were investigated. The poly(imidazole-co-butylmethacrylate)-based GPE containing the 1,2,4,5-tetrakis(bromomethyl)benzene (B4Br) cross-linker showed a higher ionic conductivity than that containing cross-linkers with a linear structure, due to the formation of micro-phase separation that resulted in an increase in ion transport paths in the GPE. Moreover, the co-adsorbent ((4-pyridylthio) acetic acid, PAA) co-adsorbed with N3 dye on the TiO2 electrode not only reduced dye aggregation, but also reacted with the cross-linkers in the GPE at the TiO2/GPE interface. A decrease in the charge transport resistance at the TiO2/GPE interface was noted after forming the gel; thus the value of JSC significantly increased from 7.72 to 10.00 mA cm−2. In addition, in order to reduce the ionic diffusion resistance within the TiO2 electrode, incorporation of monodispersed PMMA in the TiO2 paste was considered. With the optimal weight ratio of PMMA/TiO2 (w/w=3.75), the TiO2 electrode exhibited larger pores (ca. 350 nm) uniformly distributed after sintering at 500 °C, and the ionic diffusion resistance within the TiO2 film could significantly be reduced. The cell conversion efficiency increased from 3.61% to 5.81% under illumination of 100 mW cm−2, an improvement of ca. 55%.  相似文献   

16.
Ho Chang  Yu-Jen Lo 《Solar Energy》2010,84(10):1833-1837
This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO2 nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO2 nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO2 thin film with the thickness of 11 μm. Furthermore, this TiO2 thin film was sintered at 450 °C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm2 to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (VOC) of 0.56 V, short-circuit current density (JSC) of 2.05 mA/cm2, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with VOC of 0.555 V and JSC of 1.89 mA/cm2 and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with VOC of 0.53 V, JSC of 2.8 mA/cm2, and FF of 0.49.  相似文献   

17.
Cubic titanium dioxide photoanode for dye-sensitized solar cells   总被引:1,自引:0,他引:1  
Following from the recently evolved concept of significantly improving the photovoltaic efficiency in dye-sensitized solar cells (DSSCs) by reducing the loss of electrons on the spherical surface of titanium dioxide, this study examines the synthesis of cubic TiO2 with a special morphology to overcome this electron loss and investigates its application to DSSCs. Cubic TiO2 is synthesized by an advanced rapid hydrothermal method, with the addition of an amine species additive. Transmission electron microscopy (TEM) images confirm the cubic shape of the TiO2 particles with a diameter less than 5-10 nm. Using N719 dye under illumination with 100 mW cm−2 simulated sunlight, the application of cubic TiO2 to DSSCs affords an energy conversion efficiency of approximately 9.77% (4.0-μm thick TiO2 film), which is considerably enhanced compared with that achieved using a commercial, spherical TiO2. Electrostatic force microscopy (EFM) and impedance analyses reveal that the electrons are transferred more rapidly to the surface of a cubic TiO2 film than on a spherical TiO2 film.  相似文献   

18.
The effects of TiO2 photoelectrode's surface morphology and different solvents on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were studied. By successive coating of TiO2 suspension, composed of low and high molecular weight poly(ethylene)glycol (PEG) as a binder, double layered TiO2 photoelectrodes with four different structures were obtained. Among the DSSCs with different TiO2 electrodes, DSSC with P2P1 electrode (P2 and P1 correspond to PEG molecular weights of 20,000 and 200,000, respectively) showed higher performance under identical film thickness at a constant irradiation of 100 mW cm−2, which may be correlated with large pore size and high surface area of the corresponding TiO2 electrode. This was confirmed by electrochemical impedance spectroscopy (EIS) analysis of the DSSC and the transient photovoltage measurement of electrons in the TiO2 electrode. Among the different solvents investigated here, the DSSC containing acetonitrile showed high conversion efficiency and the order of performance of the DSSCs with different solvents were AN > MPN > PC > GBL > DMA > DMF > DMSO. Better correlation was observed between the donor number of solvents and photoelectrochemical parameters of the DSSCs containing different solvents rather than the measured viscosity and dielectric constant of solvents. The reasons for the low performance of the DSSCs containing DMA, DMSO and DMF, respectively, were due to the negative shift of TiO2 conduction band and the desorption of dye molecules from the TiO2 photoelectrode by those solvents.  相似文献   

19.
The performances of infrared-dye-sensitized solar cells fabricated using two novel cyanine dyes (light absorption edge: 900 nm) were investigated. The performance of the cell using NK6037 dye was superior to that using NK4432; hence, an intimate interaction between the dye and the TiO2 photoelectrode via the functional group is essential for efficient electron injection. The efficiency reached 1.9% by optimizing the light-confining effect of the TiO2 photoelectrode and TiO2 film thickness, and reached 2.3% by adjusting the concentration of deoxycholic acid (DCA) in the dye solution. The roles of the dye and DCA were clarified by photochemical and electrochemical characterization.  相似文献   

20.
The novel linear and star molecules based on benzothiadiazole as a central core, TPA as end groups and different functional groups as π-spacers were theoretically examined in the OSC applications. The geometry structures in ground and excited state, ionization potentials (IPs), electron affinities (EAs) and reorganization energy (Eλ+ and Eλ) of linear and star molecules were studied by DFT methods. The absorption and the emission spectra were calculated by TD-BHandHLYP method. Star molecules based on ethynyl groups as π-spacer exhibit ameliorative IPs, EAs, Eλ+ and Eλ, indicating they are more suitable for the formation and transfer of holes than the others. Moreover, the diethynyl groups improve the charge transfer character and extend the absorption wavelength towards the range with the maximum photon flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号