首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 357 毫秒
1.
Water management in PEM fuel cells has received extensive attention due to its key role in fuel cell performance. The unavoidable water, from humidified gas streams and electrochemical reaction, leads to gas-liquid two-phase flow in the flow channels of fuel cells. The presence of two-phase flow increases the complexity in water management in PEM fuel cells, which remains a challenging hurdle in the commercialization of this technology. Unique water emergence from the gas diffusion layer, which is different from conventional gas-liquid two-phase flow where water is introduced from the inlet together with the gas, leads to different gas-liquid flow behaviors, including pressure drop, flow pattern, and liquid holdup along flow field channels. These parameters are critical in flow field design and fuel cell operation and therefore two-phase flow has received increasing attention in recent years. This review emphasizes gas-liquid two-phase flow in minichannels or microchannels related to PEM fuel cell applications. In situ and ex situ experimental setups have been utilized to visualize and quantify two-phase flow phenomena in terms of flow regime maps, flow maldistribution, and pressure drop measurements. Work should continue to make the results more relevant for operating PEM fuel cells. Numerical simulations have progressed greatly, but conditions relevant to the length scales and time scales experienced by an operating fuel cell have not been realized. Several mitigation strategies exist to deal with two-phase flow, but often at the expense of overall cell performance due to parasitic power losses. Thus, experimentation and simulation must continue to progress in order to develop a full understanding of two-phase flow phenomena so that meaningful mitigation strategies can be implemented.  相似文献   

2.
Polymer electrolyte membrane (PEM) fuel cells convert the chemical energy of hydrogen and oxygen directly into electrical energy. Waste heat and water are the reaction by‐products, making PEM fuel cells a promising zero‐emission power source for transportation and stationary co‐generation applications. In this study, a mathematical model of a PEM fuel cell stack is formulated. The distributions of the pressure and mass flow rate for the fuel and oxidant streams in the stack are determined with a hydraulic network analysis. Using these distributions as operating conditions, the performance of each cell in the stack is determined with a mathematical, single cell model that has been developed previously. The stack model has been applied to PEM fuel cell stacks with two common stack configurations: the U and Z stack design. The former is designed such that the reactant streams enter and exit the stack on the same end, while the latter has reactant streams entering and exiting on opposite ends. The stack analysed consists of 50 individual active cells with fully humidified H2 or reformate as fuel and humidified O2 or air as the oxidant. It is found that the average voltage of the cells in the stack is lower than the voltage of the cell operating individually, and this difference in the cell performance is significantly larger for reformate/air reactants when compared to the H2/O2 reactants. It is observed that the performance degradation for cells operating within a stack results from the unequal distribution of reactant mass flow among the cells in the stack. It is shown that strategies for performance improvement rely on obtaining a uniform reactant distribution within the stack, and include increasing stack manifold size, decreasing the number of gas flow channels per bipolar plate, and judicially varying the resistance to mass flow in the gas flow channels from cell to cell. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Combining the oxidant and coolant flow in an air-cooled proton exchange membrane fuel cell can significantly simplify the fuel cell design. In this paper, an air-cooled PEM fuel cell stack with an open cathode flow field, which supplied the oxidant and removed the heat produced in the fuel cell, was fabricated and tested. The influence of different operating parameters on cell voltage performance and the overall cell ohmic resistance, such as cell temperature and airflow rate, was investigated. The cell temperature and the temperature difference between the cell and the hydrogen humidifier were shown to serve important roles in reducing the fuel cell ohmic resistance. The test results also showed a noteworthy temperature gradient between each cell of a 5-cell stack. A hydrophilic treatment of the cathode flow field channels was demonstrated to be an effective way to mitigate water management issues caused at elevated operating temperatures.  相似文献   

4.
This report presents experimental results derived from a Proton Exchange Membrane fuel cell with a serpentine flow plate design. The investigation seeks to explore the effects of some parameters like cell operational temperature, humidification and atmospheric pressure on the general performance and efficiency of PEM fuel cell using MATLAB. A number of codes were written to generate the polarization curve for a single stack and five (5) cell stack fuel cell at various operating conditions. Detailed information of hydrogen and oxygen consumption and the effect they have on the fuel cell performance were critically analysed. The investigation concluded that the open circuit voltage generated was less than the theoretical voltage predicted in the literature. It was also noticed that an increase in current or current density reduced the voltage derived from the fuel cell stack. The experiment also clearly confirmed that when more current is being drawn from the fuel cell, more water will also be generated at the cathode section of the cell hence the need for an effective water management to improve the performance of the fuel cell. Other parameters like the stack efficiency and power density were also analysed using the experimental results obtained.  相似文献   

5.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   

6.
The operation of proton exchange membrane fuel cell (PEMFC) stacks requires careful thermal and water management for optimal performance. Appropriate placement of cooling plates and appropriate cooling conditions are therefore essential. To study the impact of these design parameters, a two-phase model accounting for the conservation of mass, momentum, species, energy, and charge, a phenomenological model for the membrane, and an agglomerate model for the catalyst layer, is developed and solved. The model is validated for a single cell, in terms of both the local and the global current density, and good agreement is found. Four repetitive computational units are then identified for the number of single cells placed between the coolant plates: (i) one cell; (ii) two cells; (iii) three cells; and (iv) four cells. The flow fields in the single cells and the cooling plates are of a net type. The results show that there is a strong correlation between stack performance and the operating conditions/placement of the coolant plates. For the limiting case of one coolant plate between each unit cell, similar operating conditions can be achieved in every individual cell throughout the stack. As more cells are placed in between coolant plates, the stack performance drops due to an increase in temperature and decrease in water content in the membranes, unless the cooling temperature is lowered. The coolant temperature and inlet velocity need to be monitored carefully and adjusted to the operating conditions of the stack. This model can be employed for design and optimization of liquid water cooling of a PEMFC stack.  相似文献   

7.
The proton Exchange membrane fuel cell (PEMFC) performance depends not only on many factors including the operation conditions, transport phenomena inside the cell and kinetics of the electrochemical reactions, but also in its physical components; membrane electrode assembling (MEA) and bipolar plates (BPs). Among the PEM stack components, bipolar plates are considered one of the crucial ones, as they provide one of the most important issues regarding the performance of a stack, the homogeneous distribution of the reactive gases all over the catalyst surface and bipolar plate areas through, the so call, flow channels; physical flow patterns or paths fabricated on the BPs surfaces to guide the gases all along the BPs for its correct distribution. The failure in flow distribution among different unit cells may severely influence the fuel cell stack performance. Thus, to overcome such possible failures, the design of more efficient flow channels has received considerable attention in the research community for the last decade.  相似文献   

8.
空泡率是汽液两相流动的基本参数之一,而已有过冷沸腾空泡率计算方法研究以高质量流速为主。且大量文献报道现有空泡率模型难以适用于低流速过冷沸腾工况。该文基于低流速过冷沸腾净蒸汽产生点(NVG)理论模型,进一步建立了计算过冷沸腾空泡率的分布拟合模型。在较宽广的压力、质量流速、热流密度和流道尺寸范围内将模型计算结果与现有空泡率实验数据进行了比较,低流速工况下该模型与实验数据符合良好,表明该模型可适用于低流速过冷沸腾工况。  相似文献   

9.
Liquid water transport is one of the key challenges for water management in a proton exchange membrane (PEM) fuel cell. Investigation of the air–water flow patterns inside fuel cell gas flow channels with gas diffusion layer (GDL) would provide valuable information that could be used in fuel cell design and optimization. This paper presents numerical investigations of air–water flow across an innovative GDL with catalyst layer and serpentine channel on PEM fuel cell cathode by use of a commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different static contact angles (hydrophilic or hydrophobic) were applied to the electrode (GDL and catalyst layer). The results showed that different wettabilities of cathode electrode could affect liquid water flow patterns significantly, thus influencing on the performance of PEM fuel cells. The detailed flow patterns of liquid water were shown, several gas flow problems were observed, and some useful suggestions were given through investigating the flow patterns.  相似文献   

10.
《Journal of power sources》2006,161(2):1116-1125
The research presented here investigates the use of vibro-acoustic methods to improve the performance of a PEM fuel cell by enhancing water removal from the active reaction sites within the fuel cell. Removing the water increases the available reaction sites and thus increases the available power for a given operating condition. To examine the new water removal methods, first, the production of water in fuel cells and current water removal methods are reviewed. Then, the new methods are proposed that are based on structural and acoustical excitation of the stack. Specifically, the use of flexural waves, acoustic waves and surface waves to remove water from a fuel cell stack are examined. Analytical formulations are given in order to calculate the excitation frequency and amplitude required to move a droplet resting on a vibrating bipolar plate. Depending on the droplet radius and other parameters, it is estimated that a water droplet resting on a bipolar plate can be moved by structural displacement levels as low as 1 μm. The different approaches to droplet removal are compared in terms of the minimum vibration energy required per droplet. Water production in a commercial fuel cell stack is then estimated and used as a test case to compare the power required to effect removal of a certain number of droplets with the amount of power produced by the stack. It is shown that a water droplet clogging a plate channel may be moved with parasitic power requirements as low as 21 mW. For each method, the energy required to effect droplet removal is quite small, although among the three, the use of surface acoustic waves may be the best option in terms of minimal vibration energy and implementation feasibility.  相似文献   

11.
Finding the optimal flow pattern in bipolar plates of a proton exchange membrane is a crucial step for enhancing the performance of the device. This design plays a critical role in fluid mass transport through microporous layers, charge transfer through conductive media, management of the liquid water produced in microchannels, and microporous layers and heat management in fuel cells. This article investigates different types of common flow patterns in bipolar plates while considering a uniform pressure and velocity distribution as well as a uniform distribution of reactants through all the surfaces of the catalyst layer as the design criteria so that there would be a consistent electron production by the catalyst layer. Then, by identifying the important parameters in achieving the best performance of a fuel cell, a microfluidic flow pattern is inspired from the lungs in the human body, and an innovative bipolar plate is suggested, which was not proposed before. Afterwards, numerical simulations were carried out using computational fluid dynamics methods, and the mentioned bipolar plate called lung‐shaped bipolar plate was modeled. Simulations in this research showed that the lung‐shaped microfluidic flow pattern is an appropriate flow pattern to gain maximum power and energy density. In other words, the best polarization curve and power density curve are obtained by using the lung‐shaped bipolar plate in a proton exchange membrane fuel cell compared with previously suggested patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
A proton exchange membrane fuel cell (PEMFC) must maintain a balance between the hydration level required for efficient proton transfer and excess liquid water that can impede the flow of gases to the electrodes where the reactions take place. Therefore, it is critically important to understand the two-phase flow of liquid water combined with either the hydrogen (anode) or air (cathode) streams. In this paper, we describe the design of an in situ test apparatus that enables investigation of two-phase channel flow within PEMFCs, including the flow of water from the porous gas diffusion layer (GDL) into the channel gas flows; the flow of water within the bipolar plate channels themselves; and the dynamics of flow through multiple channels connected to common manifolds which maintain a uniform pressure differential across all possible flow paths. These two-phase flow effects have been studied at relatively low operating temperatures under steady-state conditions and during transient air purging sequences.  相似文献   

13.
In a proton exchange membrane fuel cell (PEMFC) water management is one of the critical issues to be addressed. Although the membrane requires humidification for high proton conductivity, water in excess decreases the cell performance by flooding. In this paper an improved strategy for water management in a fuel cell operating with low water content is proposed using a parallel serpentine-baffle flow field plate (PSBFFP) design compared to the parallel serpentine flow field plate (PSFFP). The water management in a fuel cell is closely connected to the temperature control in the fuel cell and gases humidifier. The PSBFFP and the PSFFP were evaluated comparatively under three different humidity conditions and their influence on the PEMFC prototype performance was monitored by determining the current density–voltage and current density–power curves. Under low humidification conditions the PEMFC prototype presented better performance when fitted with the PSBFFP since it retains water in the flow field channels.  相似文献   

14.
Research on hydrogen pressure characteristics was performed for a fuel cell stack to supply a rule of hydrogen pressure drop for flooding diagnostic systems. Some experiments on the hydrogen pressure drop in various operating pressure, temperature, flowrate and stack current conditions were carried out, and hydrodynamic calculation was managed to compare with the experiment results. Results show that the hydrogen pressure drop is strongly affected by liquid water content in the flow channel of fuel cells, and it is not in normal relation with flowrate when the stoichiometric ratio is inconstant. The total pressure drop can be calculated by a frictional pressure loss formula accurately, relating with mixture viscosity, stack temperature, operating pressure, stoichiometric ratio and stack current. The pressure drop characteristics will be useful for predicting liquid water flooding in fuel cell stacks before flow channels have been jammed as a diagnostic tool in electric control systems.  相似文献   

15.
Water management in fuel cells is important for avoiding the phenomenon of flooding or dehydration in the stack and for maintaining good fuel cell performance and durability. This study focuses on the evaluation of the dynamic performance and behaviour (purge cycle) of the commercial Polymer Electrolyte Membrane (PEM) fuel cell stack towards water transport (water balance) at different operating conditions. The stack was operated at different current loads (0–10 A) and operating temperature (ambient to 50 °C). The results indicated that the measured water accumulation in the stack increased with the increase in current load. The optimal current load was 4 A, with calculated efficiency of 62.8%. The optimal operating temperature was 40 °C, resulting in calculated efficiency of 52.3%. At higher temperature, the fuel cell performance decreased, and the measured water balance was not properly distributed, which could be due to the dehydration and low conductivity of the electrolyte membrane. It can be concluded that the behaviour and performance of the stack, as well as the water balance in the stack, were influenced by the operating conditions. Moreover, this study improves the understanding of fuel cell performance and behaviour based on evaluation of the water balance.  相似文献   

16.
Open Pore Cellular Foam (OPCF) has received increased attention for use in Proton Exchange Membrane (PEM) fuel cells as a flow plate due to some advantages offered by the material, including better gas flow, lower pressure drop and low electrical resistance.In the present study, a novel design for an air-breathing PEM (ABPEM) fuel cell, which allows air convection from the surrounding atmosphere, using OPCF as a flow distributor has been developed. The developed fuel cell has been compared with one that uses a normal serpentine flow plate, demonstrating better performance.A comparative analysis of the performance of an ABPEM and pressurised air PEM (PAPEM) fuel cell is conducted and poor water management behaviour was observed for the ABPEM design.Thereafter, a PTFE coating has been applied to the OPCF with contact angle and electrochemical polarisation tests conducted to assess the capability of the coating to enhance the hydrophobicity and corrosion protection of metallic OPCF in the PEM fuel cell environment. The results showed that the ABPEM fuel cell with PTFE coated OPCF had a better performance than that with uncoated OPCF.Finally, OPCF was employed to build an ABPEM fuel cell stack where the performance, advantages and limitations of this stack are discussed in this paper.  相似文献   

17.
A design study of a novel proton exchange membrane fuel cell (PEMFC) is presented in this article. The PEMFC is particularly suited to the automotive and small-scale stationary industries; however, at this stage it fails to be a viable commercial alternative to the internal combustion engine. This is mainly due to large material and manufacturing costs associated with components used in the fuel cell. A new design approach that removes the bipolar plate from the PEMFC stack is investigated. A single PEMFC, which features the design changes that can be integrated in the main stack, has been designed, manufactured, assembled, and tested to obtain performance characteristics for a range of operating conditions. Two different flow configurations for the reactants, that is, dead-end gas flow and through-mode flow, were tested. The new design achieved performance comparable to that with conventional designs reported in literature. The experimental results confirmed that bipolar plate can be removed and it is possible to bring down the costs and weight of the stack drastically. It is envisaged that the new design will allow the PEMFC to potentially inject into the current market.  相似文献   

18.
Water flooding is detrimental to the performance of the proton exchange membrane fuel cell (PEMFC) and therefore it has to be addressed. To better understand how liquid water affects the fuel cell performance, direct visualisation of liquid water in the flow channels of a transparent PEMFC is performed under different operating conditions. Two high-resolution digital cameras were simultaneously used for recording and capturing the images at the anode and cathode flow channels. A new parameter extracted from the captured images, namely the wetted bend ratio, has been introduced as an indicator of the amount of liquid water present at the flow channel. This parameter, along with another previously used parameter (wetted area ratio), has been used to explain the variation in the fuel cell performance as the operating conditions of flow rates, operating pressure and relative humidity change. The results have shown that, except for hydrogen flow rate, the wetted bend ratio strongly linked to the operating condition of the fuel cell; namely: the wetted bend ratio was found to increase with decreasing air flow rate, increasing operating pressure and increasing relative humidity. Also, the status of liquid water at the anode was found to be similar to that at the cathode for most of the cases and therefore the water dynamics at the anode side can also be used to explain the relationships between the fuel cell performance and the investigated operating conditions.  相似文献   

19.
A partially flooded gas diffusion layer (GDL) model is proposed and solved simultaneously with a stack flow network model to estimate the operating conditions under which water flooding could be initiated in a polymer electrolyte membrane (PEM) fuel cell stack. The models were applied to the cathode side of a stack, which is more sensitive to the inception of GDL flooding and/or flow channel two-phase flow. The model can predict the stack performance in terms of pressure, species concentrations, GDL flooding and quality distributions in the flow fields as well as the geometrical specifications of the PEM fuel cell stack. The simulation results have revealed that under certain operating conditions, the GDL is fully flooded and the quality is lower than one for parts of the stack flow fields. Effects of current density, operating pressure, and level of inlet humidity on flooding are investigated.  相似文献   

20.
《Journal of power sources》2006,160(1):252-257
The bipolar plates are in weight and volume the major part of PEM fuel cell stack, and also a significant effect to the stack cost. To develop the low-cost and low-weight bipolar plate for PEM fuel cell, we have developed a kind of cheap expanded graphite plate material and a production process for fuel cell bipolar plates. The plates have a high electric conductivity and low density, and can be stamped directly forming fuel cell bipolar plates. Then, 1 and 10 kW stacks using expanded graphite bipolar plates are successfully assembled. The contact resistance of the bipolar plate is investigated and the electrochemical performances of the fuel cell stacks are tested. Good fuel cell performance is obtained and the voltage distribution among every single cell in the stacks is very uniform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号