首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper considers the Bus Terminal Location Problem (BTLP) which incorporates characteristics of both the p-median and maximal covering problems. We propose a parallel variable neighborhood search algorithm (PVNS) for solving BTLP. Improved local search, based on efficient neighborhood interchange, is used for the p-median problem, and is combined with a reduced neighborhood size for the maximal covering part of the problem. The proposed parallel algorithm is compared with its non-parallel version. Parallelization yielded significant time improvement in function of the processor core count. Computational results show that PVNS improves all existing results from the literature, while using significantly less time. New larger instances, based on rl instances from the TSP library, are introduced and computational results for those new instances are reported.  相似文献   

2.
This paper considers the design of two-layered networks with fully interconnected backbone and access networks. The problem, a specific application of hub location to network design, is known as fully interconnected network design problem (FINDP). A novel mathematical programming formulation advantageous over an earlier formulation is presented to model the problem. Two hybrid heuristics are proposed to solve the problem, namely SAVNS and TSVNS which incorporate a variable neighborhood search (VNS) algorithm into the framework of simulated annealing (SA) and tabu search (TS). The proposed algorithms are able to easily obtain the optimal solutions for 24 small instances existing in the literature in addition to efficiently solve new generated medium and large instances. Results indicate that the proposed algorithms generate high quality solutions in a quite short CPU time.  相似文献   

3.
The Resource Allocation Problem (RAP) is a classical problem in the field of operations management that has been broadly applied to real problems such as product allocation, project budgeting, resource distribution, and weapon-target assignment. In addition to focusing on a single objective, the RAP may seek to simultaneously optimize several expected but conflicting goals under conditions of resources scarcity. Thus, the single-objective RAP can be intuitively extended to become a Multi-Objective Resource Allocation Problem (MORAP) that also falls in the category of NP-Hard. Due to the complexity of the problem, metaheuristics have been proposed as a practical alternative in the selection of techniques for finding a solution. This study uses Variable Neighborhood Search (VNS) algorithms, one of the extensively used metaheuristic approaches, to solve the MORAP with two important but conflicting objectives—minimization of cost and maximization of efficiency. VNS searches the solution space by systematically changing the neighborhoods. Therefore, proper design of neighborhood structures, base solution selection strategy, and perturbation operators are used to help build a well-balanced set of non-dominated solutions. Two test instances from the literature are used to compare the performance of the competing algorithms including a hybrid genetic algorithm and an ant colony optimization algorithm. Moreover, two large instances are generated to further verify the performance of the proposed VNS algorithms. The approximated Pareto front obtained from the competing algorithms is compared with a reference Pareto front by the exhaustive search method. Three measures are considered to evaluate algorithm performance: D1R, the Accuracy Ratio, and the number of non-dominated solutions. The results demonstrate the practicability and promise of VNS for solving multi-objective resource allocation problems.  相似文献   

4.

The maximum set k-covering problem (MKCP) is a famous combinatorial optimization problem with widely many practical applications. In our work, we design a restart local search algorithm for solving MKCP, which is called RNKC. This algorithm effectively makes use of several advanced ideas deriving from the random restart mechanism and the neighborhood search method. RNKC designs a new random restart method to deal with the serious cycling problem of local search algorithms. Thanks to the novel neighborhood search method that allows a neighborhood exploration of as many feasible search areas as possible, the RNKC can obtain some greatly solution qualities. Comprehensive results on the classical instances show that the RNKC algorithm competes very favorably with a famous commercial solver CPLEX. In particular, it discovers some improved and great results and matches the same solution quality for some instances.

  相似文献   

5.
Local search algorithms based on the Configuration Checking (CC) strategy have been shown to be efficient in solving satisfiable random k-SAT instances. The purpose of the CC strategy is to avoid the cycling problem, which corresponds to revisiting already flipped variables too soon. It is done by considering the neighborhood of the formula variables. In this paper, we propose to improve the CC strategy on the basis of an empirical study of a powerful algorithm using this strategy. The first improvement introduces a new and simple criterion, which refines the selection of the variables to flip for the 3-SAT instances. The second improvement is achieved by using the powerful local search algorithm Novelty with the adaptive noise setting. This algorithm enhances the efficiency of the intensification and diversification phases when solving k-SAT instances with k ≥ 4. We name the resulting local search algorithm Ncca+ and show its effectiveness when treating satisfiable random k-SAT instances issued from the SAT Challenge 2012. Ncca+ won the bronze medal of the random SAT track of the SAT Competition 2013.  相似文献   

6.
This paper studies a multi-objective production–distribution system. The objectives are to minimize total costs and maximize the reliability of transportations system. Each transportation system is assumed to be of unique reliability. In the real world, some parameters may be of vagueness; therefore, some tools such as fuzzy logic is applied to tackle with. The problem is formulated using a mixed integer programming model. Commercial software can optimally solve small sized instances. We propose two novel HEURISTICS called ranking genetic algorithm (RGA) and concessive variable neighborhood search (CVNS) in order to solve the large sized instances. RGA utilizes various crossover operators and compares their performances so that better crossover operators are used during the solution process. CVNS applies several neighborhood search structures with a novel learning procedure. The heuristics can recognize which neighborhood structure performs well and applies those more than the others. The results indicated that RGA is of higher performance.  相似文献   

7.
The cumulative capacitated vehicle routing problem (CCVRP) is a variation of the classical capacitated vehicle routing problem in which the objective is the minimization of the sum of arrival times at customers, instead of the total routing cost. This paper presents an adaptive large neighborhood search heuristic for the CCVRP. This algorithm is applied to a set of benchmark instances and compared with two recently published memetic algorithms.  相似文献   

8.
This paper addresses the NP hard optimization problem of packing identical spheres of unit radii into the smallest sphere (PSS). It models PSS as a non-linear program (NLP) and approximately solves it using a hybrid heuristic which couples a variable neighborhood search (VNS) with a local search (LS). VNS serves as the diversification mechanism whereas LS acts as the intensification one. VNS investigates the neighborhood of a feasible local minimum u in search for the global minimum, where neighboring solutions are obtained by shaking one or more spheres of u and the size of the neighborhood is varied by changing the number of shaken spheres, the distance and the direction each sphere is moved. LS intensifies the search around a solution u by subjecting its neighbors to a sequential quadratic algorithm with non-monotone line search (as the NLP solver). The computational investigation highlights the role of LS and VNS in identifying (near) global optima, studies their sensitivity to initial solutions, and shows that the proposed hybrid heuristic provides more precise results than existing approaches. Most importantly, it provides computational evidence that the multiple-start strategy of non-linear programming solvers is not sufficient to solve PSS. Finally, it gives new upper bounds for 29 out of 48 benchmark instances of PSS.  相似文献   

9.
The Job-Shop Scheduling Problem (JSSP) has drawn considerable interest during the last decades, mainly because of its combinatorial characteristics, which make it very difficult to solve. The good performances attained by local search procedures, and especially Nowicki and Smutnicki's i-TSAB algorithm, encouraged researchers to combine such local search engines with global methods. Differential Evolution (DE) is an Evolutionary Algorithm that has been found to be particularly efficient for continuous optimization, but which does not usually perform well when applied to permutation problems. We introduce in this paper the idea of hybridizing DE with Tabu Search (TS) in order to solve the JSSP. A competitive neighborhood is included within the TS with the aim of determining if DE is able to replace the re-start features that constitute the main strengths of i-TSAB (i.e., a long-term memory and a path-relinking procedure). The computational experiments reported for more than 100 JSSP instances show that the proposed hybrid DE–TS algorithm is competitive with respect to other state-of-the-art techniques, although, there is still room for improvement if the adequacy between the solution representation modes within DE and TS is properly stressed.  相似文献   

10.
The definition of a “good” neighborhood structure on the solution space is a key step when designing several types of heuristics for Mixed Integer Programming (MIP). Typically, in order to achieve efficiency in the search, the neighborhood structures need to be tailored not only to the specific problem but also to the peculiar distribution of the instances to be solved (reference instance population). Nowadays, this is done by human experts through a time-consuming process comprising: (a) problem analysis, (b) literature scouting and (c) experimentation. In this paper, we illustrate an Automatic Neighborhood Design algorithm that mimics steps (a) and (c). Firstly, the procedure extracts some semantic features from a MIP compact model. Secondly, these features are used to derive automatically some neighborhood design mechanisms. Finally, the “proper mix” of such mechanisms is sought through an automatic configuration phase performed on a training set representative of the reference instance population. When assessed on four well-known combinatorial optimization problems, our automatically-generated neighborhoods outperform state-of-the-art model-based neighborhoods with respect to both scalability and solution quality.  相似文献   

11.
Problem of scheduling on a single machine to minimize total weighted tardiness of jobs can be described as follows: there are n jobs to be processed, each job has an integer processing time, a weight and a due date. The objective is to minimize the total weighted tardiness of jobs. The problem belongs to the class of NP-hard problems. Some new properties of the problem associated with the blocks have been presented and discussed. These properties allow us to propose a new fast local search procedure based on a tabu search approach with a specific neighborhood which employs blocks of jobs and a compound moves technique. A compound move consists in performing several moves simultaneously in a single iteration of algorithm and allows us to accelerate the convergence to good solutions. In the algorithm, we use an idea which decreases the complexity for the search of neighborhood from O(n3) to O(n2). Additionally, the neighborhood is reduced by using some elimination criteria. The method presented in this paper is deterministic one and has not any random element, as distinct from other effective but non-deterministic methods proposed for this problem, such as tabu search of Crauwels, H. A. J., Potts, C. N., & Van Wassenhove, L. N. (1998). Local search heuristics for the single machine total weighted tardiness Scheduling Problem. INFORMS Journal on Computing, 10(3), 341–350, iterated dynasearch of Congram, R. K., Potts C. N., & Van de Velde, S. L. (2002). An iterated dynasearch algorithm for the single-machine total weighted tardiness scheduling problem. INFORMS Journal on Computing, 14(1), 52–67 and enhanced dynasearch of Grosso, A., Della Croce, F., & Tadei, R. (2004). An enhanced dynasearch neighborhood for single-machine total weighted tardiness scheduling problem. Operations Research Letters, 32, 68–72. Computational experiments on the benchmark instances from OR-Library (http://people.brunel.ac.uk/mastjjb/jeb/info.html) are presented and compared with the results yielded by the best algorithms discussed in the literature. These results show that the algorithm proposed allows us to obtain the best known results for the benchmarks in a short time. The presented properties and ideas can be applied in any local search procedures.  相似文献   

12.
This contribution presents a two-phase variable neighborhood search algorithm for solving nurse rostering problems. In order to demonstrate the efficiency of the proposed algorithm, it is firstly applied to all nurse rostering problem instances as proposed in the First International Nurse Rostering Competition (INRC-2010). Computational results assessed on all three sets of sixty competition instances demonstrate that the proposed algorithm improves the best known results for two instances, inside the time limits of the competition, while achieving the best known bounds for forty eight other instances. The proposed algorithm was also applied to seven other nurse rostering instances reported in the respective literature and managed to achieve the best known result in six of them while improving the best known result in one instance. The proposed algorithm, as well as its differences from existing approaches are presented, described and discussed in detail.  相似文献   

13.
The goal of the less is more approach (LIMA) for solving optimization problems that has recently been proposed in Mladenovi? et al. (2016) is to find the minimum number of search ingredients that make a heuristic more efficient than the currently best. In this paper, LIMA is successfully applied to solve the obnoxious p‐median problem (OpMP). More precisely, we developed a basic variable neighborhood search for solving the OpMP, where the single search ingredient, the interchange neighborhood structure, is used. We also propose a new simple local search strategy for solving facility location problems, within the interchange neighborhood structure, which is in between the usual ones: first improvement and best improvement strategies. We call it facility best improvement local search. On the basis of experiments, it appeared to be more efficient and effective than both first and best improvement. According to the results obtained on the benchmark instances, our heuristic turns out to be highly competitive with the existing ones, establishing new state‐of‐the‐art results. For example, four new best‐known solutions and 133 ties are claimed in testing the set with 144 instances.  相似文献   

14.
High School Timetabling (HSTT) is a well known and wide spread problem. The problem consists of coordinating resources (e.g. teachers, rooms), times, and events (e.g. lectures) with respect to various constraints. Unfortunately, HSTT is hard to solve and just finding a feasible solution for simple variants of HSTT have been proven to be NP-complete. We propose a new algorithm for HSTT which combines local search with a novel maxSAT-based large neighborhood search. A local search algorithm is used to drive an initial solution into a local optimum and then more powerful large neighborhood search (LNS) techniques based on maxSAT are used to further improve the solution. We prove the effectiveness of our approach with experimental results on instances taken from the Third International Timetabling Competition 2011 and the XHSTT-2014 benchmark archive. We were able to model 27 out of 39 instances. The remaining 12 instances were not modeled because the currently used maxSAT formulation for XHSTT does not support resource assignments in general. For the instances which could be modeled, our algorithm shows good performance when compared to other XHSTT state-of-the-art solvers and for several instances new best known upper bounds have been computed.  相似文献   

15.
The capacitated p-median problem (CPMP) seeks to obtain the optimal location of p medians considering distances and capacities for the services to be given by each median. This paper presents an efficient hybrid metaheuristic algorithm by combining a proposed cutting-plane neighborhood structure and a tabu search metaheuristic for the CPMP. In the proposed neighborhood structure to move from the current solution to a neighbor solution, an open median is selected and closed. Then, a linear programming (LP) model is generated by relaxing binary constraints and adding new constraints. The generated LP solution is improved using cutting-plane inequalities. The solution of this strong LP is considered as a new neighbor solution. In order to select an open median to be closed, several strategies are proposed. The neighborhood structure is combined with a tabu search algorithm in the proposed approach. The parameters of the proposed hybrid algorithm are tuned using design of experiments approach. The proposed algorithm is tested on several sets of benchmark instances. The statistical analysis shows efficiency and effectiveness of the hybrid algorithm in comparison with the best approach found in the literature.  相似文献   

16.
We present an Iterated Local Search (ILS) algorithm for solving the single-machine scheduling problem with sequence-dependent setup times to minimize the total weighted tardiness. The proposed ILS algorithm exhibits several distinguishing features, including a new neighborhood structure called Block Move and a fast incremental evaluation technique, for evaluating neighborhood solutions. Applying the proposed algorithm to solve 120 public benchmark instances widely used in the literature, we achieve highly competitive results compared with a recently proposed exact algorithm and five sets of best solutions of state-of-the-art metaheuristic algorithms in the literature. Specifically, ILS obtains the optimal solutions for 113 instances within a reasonable time, and it outperforms the previous best-known results obtained by metaheuristic algorithms for 34 instances and matches the best results for 82 instances. In addition, ILS is able to obtain the optimal solutions for the remaining seven instances under a relaxed time limit, and its computational efficiency is comparable with the state-of-the-art exact algorithm by Tanaka and Araki (Comput Oper Res 40:344–352, 2013). Finally, on analyzing some important features that affect the performance of ILS, we ascertain the significance of the proposed Block Move neighborhood and the fast incremental evaluation technique.  相似文献   

17.
The Capacitated m-Ring-Star Problem (CmRSP) models a network topology design problem in the telecommunications industry. In this paper, we propose to solve this problem using a memetic algorithm that includes a crossover operation, a mutation operation, a local search involving three neighborhood operators, and a population selection strategy that maintains population diversity. Our approach generates the best known solutions for 131 out of 138 benchmark instances, improving on the previous best solutions for 24 of them, and exhibits more advantages on large benchmark instances when compared with the best existing approach. Additionally, all existing algorithms for this problem in literature assume that the underlying graph of the problem instance satisfies the triangle inequality rule; our approach does not require this assumption. We also generated a new set of 36 larger test instances based on a digital data service network price structure to serve as a new benchmark data set for future researchers.  相似文献   

18.
This paper applies a hybrid simulated annealing – tabu search algorithm to solve the Traveling Salesman Problem (TSP). Fully considering the characteristics of the hybrid algorithm, we develop a dynamic neighborhood structure for the hybrid algorithm to improve search efficiency by reducing the randomness of the conventional 2-opt neighborhood. A circle-directed mutation is developed to achieve this dynamic neighborhood structure. Furthermore, we propose adaptive parameters that can be automatically adjusted by the algorithm based on context specific examples. This negates the need to frequently readjust algorithm parameters. We employ benchmarks obtained from TSPLIB (a library of sample instances for the TSP) to test our algorithm, and find that the proposed algorithm can obtain satisfactory solutions within a reasonable amount of time. The experimental results demonstrate that the proposed hybrid algorithm can overcome the disadvantages of traditional simulated annealing and tabu search methods. The results also show that the dynamic neighborhood structure is more efficient and accurate than the classical 2-opt. Also, adaptive parameters are appropriate for almost all of the numerical examples tested in this paper. Finally, the experimental results are compared with those of other algorithms, to demonstrate the improved accuracy and efficiency of the proposed algorithm.  相似文献   

19.
Solving large FPT problems on coarse-grained parallel machines   总被引:1,自引:0,他引:1  
Fixed-parameter tractability (FPT) techniques have recently been successful in solving NP-complete problem instances of practical importance which were too large to be solved with previous methods. In this paper, we show how to enhance this approach through the addition of parallelism, thereby allowing even larger problem instances to be solved in practice. More precisely, we demonstrate the potential of parallelism when applied to the bounded-tree search phase of FPT algorithms. We apply our methodology to the k-Vertex Cover problem which has important applications in, for example, the analysis of multiple sequence alignments for computational biochemistry. We have implemented our parallel FPT method for the k-Vertex Cover problem using C and the MPI communication library, and tested it on a 32-node Beowulf cluster. This is the first experimental examination of parallel FPT techniques. As part of our experiments, we solved larger instances of k-Vertex Cover than in any previously reported implementations. For example, our code can solve problem instances with k?400 in less than .  相似文献   

20.
A multiobjective variable neighborhood descent (VND) based heuristic is developed to solve a bicriteria parallel machine scheduling problem. The problem considers two objectives, one related to the makespan and the other to the flow time, where the setup time depends on the sequence, and the machines are identical. The heuristic has a set of neighborhood structures based on swap, remove, and insertion moves. We propose changing the local search inside the VND to a sequential search through the neighborhoods to obtain nondominated points for the Pareto‐front quickly. In the numerical tests, we consider a single‐objective version of the heuristic, comparing the results on 510 benchmark instances to show that it is quite effective. Moreover, new instances are generated in accordance with the literature for the bicriteria problem, showing the ability of the proposed heuristic to return an efficient set of nondominate solutions compared with the well‐known nondominated sorting genetic algorithm II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号