首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new strategy for the mass matrix lumping of enriched elements for explicit transient analysis is presented. It is shown that to satisfy the kinetic energy conservation, the use of zero or negative masses for enriched degrees of freedom of lumped mass matrix may be necessary. For a completely cracked element, by lumping the mass of each side of the interface into the finite element nodes located at the same side and assigning zero masses to the enriched degrees of freedom, the kinetic energy for rigid body translations is conserved without transferring spurious energy across the interface. The time integration is performed by adopting an explicit-implicit technique, where the regular and enriched degrees of freedom are treated explicitly and implicitly, respectively. The proposed method can be viewed as a general mass lumping scheme for the variants of the extended finite element methods because it can be used irrespective of the enrichment method. It also preserves the optimal critical time step of an intact finite element by treating the enriched degrees of freedom implicitly. The accuracy and efficiency of the proposed mass matrix are validated with several benchmark examples.  相似文献   

2.
This paper focuses on the introduction of a lumped mass matrix for enriched elements, which enables one to use a pure explicit formulation in X‐FEM applications. A proof of stability for the 1D and 2D cases is given. We show that if one uses this technique, the critical time step does not tend to zero as the support of the discontinuity reaches the boundaries of the elements. We also show that the X‐FEM element's critical time step is of the same order as that of the corresponding element without extended degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The conventional extended finite element method (XFEM) is enhanced in this paper to simulate dynamic crack branching, which is a top challenge issue in fracture mechanics and finite element method. XFEM uses the enriched shape functions with special characteristics to represent the discontinuity in computation field. In order to describe branched cracks, it is necessary to set up the additional enrichment. Here we have developed two kinds of branched elements, namely the “element crossed by two separated cracks” and “element embedded by a junction”. Another series of enriched degrees of freedom are introduced to seize the additional discontinuity in the elements. A shifted enrichment scheme is used to avoid the treatment of blending element. Correspondingly a new mass lumping method is developed for the branched elements based on the kinetic conservation. The derivation of the mass matrix of a four-node quadrilateral element which contains two strong discontinuities is specially presented. Then by choosing crack speed as the branching criterion, the branching process of a single mode I crack is simulated. The results including the branching angle and propagation routes are compared with that obtained by the conventionally used element deletion method.  相似文献   

4.
In this work we propose a method which combines the element‐free Galerkin (EFG) with an extended partition of unity finite element method (PUFEM), that is able to enforce, in some limiting sense, the essential boundary conditions as done in the finite element method (FEM). The proposed extended PUFEM is based on the moving least square approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear and higher order base functions. With the objective of avoiding the presence of singular points, the extended PUFEM considers an extension of the support of the classical PUFE weight function. Since the extended PUFEM is closely related to the EFG method there is no need for special approximation functions with complex implementation procedures, and no use of the penalty and/or multiplier method is required in order to approximately impose the essential boundary condition. Thus, a relatively simple procedure is needed to combine both methods. In order to attest the performance of the method we consider the solution of an analytical elastic problem and also some coupled elastoplastic‐damage problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we develop a method based on local maximum entropy shape functions together with enrichment functions used in partition of unity methods to discretize problems in linear elastic fracture mechanics. We obtain improved accuracy relative to the standard extended finite element method at a comparable computational cost. In addition, we keep the advantages of the LME shape functions, such as smoothness and non-negativity. We show numerically that optimal convergence (same as in FEM) for energy norm and stress intensity factors can be obtained through the use of geometric (fixed area) enrichment with no special treatment of the nodes near the crack such as blending or shifting.  相似文献   

6.
Shear locking is a major issue emerging in the computational formulation of beam and plate finite elements of minimal number of degrees of freedom as it leads to artificial overstiffening. In this paper, discontinuous Timoshenko beam and Mindlin‐Reissner plate elements are developed by adopting the Hellinger‐Reissner functional with the displacements and through‐thickness shear strains as degrees of freedom. Heterogeneous beams and plates with weak discontinuity are considered, and the mixed formulation has been combined with the extended finite element method (FEM); thus, mixed enrichment functions are used. Both the displacement and the shear strain fields are enriched as opposed to the traditional extended FEM where only the displacement functions are enriched. The enrichment type is restricted to extrinsic mesh‐based topological local enrichment. The results from the proposed formulation correlate well with analytical solution in the case of the beam and in the case of the Mindlin‐Reissner plate with those of a finite element package (ABAQUS) and classical FEM and show higher rates of convergence. In all cases, the proposed method captures strain discontinuity accurately. Thus, the proposed method provides an accurate and a computationally more efficient way for the formulation of beam and plate finite elements of minimal number of degrees of freedom.  相似文献   

7.
A multiscale method for 3‐D crack propagation simulation in large structures is proposed. The method is based on the extended finite element method (X‐FEM). The asymptotic behavior of the crack front is accurately modeled using enriched elements and no remeshing is required during crack propagation. However, the different scales involved in fracture mechanics problems can differ by several orders of magnitude and industrial meshes are usually not designed to account for small cracks. Enrichments are therefore useless if the crack is too small compared with the element size. To overcome this drawback, a project combining different numerical techniques was started. The first step was the implementation of a global multigrid algorithm within the X‐FEM framework and was presented in a previous paper (Eur. J. Comput. Mech. 2007; 16 :161–182). This work emphasized the high efficiency in cpu time but highlighted that mesh refinement is required on localized areas only (cracks, inclusions, steep gradient zones). This paper aims at linking the different scales by using a local multigrid approach. The coupling of this technique with the X‐FEM is described and computational aspects dealing with intergrid operators, optimal multiscale enrichment strategy and level sets are pointed out. Examples illustrating the accuracy and efficiency of the method are given. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
The partition of unity based methods, such as the extended finite element method and the numerical manifold method, are able to construct global functions that accurately reflect local behaviors through introducing locally defined basis functions beyond polynomials. In the dynamic analysis of cracked bodies using an explicit time integration algorithm, as a result, huge difficulties arise in deriving lumped mass matrices because of the presence of those physically meaningless degrees of freedom associated with those locally defined functions. Observing no spatial derivatives of trial or test functions exist in the virtual work of inertia force, we approximate the virtual work of inertia force in a coarser manner than the virtual work of stresses, where we inversely utilize the ‘from local to global’ skill. The proposed lumped mass matrix is strictly diagonal and can yield the results in agreement with the consistent mass matrix, but has more excellent dynamic property than the latter. Meanwhile, the critical time step of the numerical manifold method equipped with an explicit time integration scheme and the proposed mass lumping scheme does not decrease even if the crack in study approaches the mesh nodes — a very excellent dynamic property. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the numerical modelling of cracks in the dynamic case using the extended finite element method. More precisely, we are interested in explicit algorithms. We prove that by using a specific lumping technique, the critical time step is exactly the same as if no crack were present. This somewhat improves a previous result for which the critical time step was reduced by a factor of square root of 2 from the case with no crack. The new lumping technique is obtained by using a lumping strategy initially developed to handle elements containing voids. To be precise, the results obtained are valid only when the crack is modelled by the Heaviside enrichment. Note also that the resulting lumped matrix is block diagonal (blocks of size 2 × 2). For constant strain elements (linear simplex elements) the critical time step is not modified when the element is cut. Thanks to the lumped mass matrix, the critical time step never tends to zero. Moreover, the lumping techniques conserve kinetic energy for rigid motions. In addition, tensile stress waves do not propagate through the discontinuity. Hence, the lumping techniques create neither error on kinetic energy conservation for rigid motions nor wave propagation through the crack. Both these techniques will be used in a numerical experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
An enriched partition of unity FEM is developed to solve time‐dependent diffusion problems. In the present formulation, multiple exponential functions describing the spatial and temporal diffusion decay are embedded in the finite element approximation space. The resulting enrichment is in the form of a local asymptotic expansion. Unlike previous works in this area where the enrichment must be updated at each time step, here, the temporal decay in the solution is embedded in the asymptotic expansion. Thus, the system matrix that is evaluated at the first time step may be decomposed and retained for every next time step by just updating the right‐hand side of the linear system of equations. The advantage is a significant saving in the computational effort where, previously, the linear system must be reevaluated and resolved at every time step. In comparison with the traditional finite element analysis with p‐version refinements, the present approach is much simpler, more efficient, and yields more accurate solutions for a prescribed number of DoFs. Numerical results are presented for a transient diffusion equation with known analytical solution. The performance of the method is analyzed on two applications: the transient heat equation with a single source and the transient heat equation with multiple sources. The aim of such a method compared with the classical FEM is to solve time‐dependent diffusion applications efficiently and with an appropriate level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A paradigm is developed for generating structured finite element models from solid models by means of implicit surface definitions. The implicit surfaces are defined by radial basis functions. Internal features, such as material interfaces, sliding interfaces and cracks are treated by enrichment techniques developed in the extended finite element method. Methods for integrating the weak form for such models are proposed. These methods simplify the generation of finite element models. Results presented for several examples show that the accuracy of this method is comparable to standard unstructured finite element methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The behaviour of high‐order time stepping methods combined with mesh‐free methods is studied for the transient convection–diffusion equation. Particle methods, such as the element‐free Galerkin (EFG) method, allow to easily increase the order of consistency and, thus, to formulate high‐order schemes in space and time. Moreover, second derivatives of the EFG shape functions can be constructed with a low extra cost and are well defined, even for linear interpolation. Thus, consistent stabilization schemes can be considered without loss in the convergence rates. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Extensions of a new technique for the finite element modelling of cracks with multiple branches, multiple holes and cracks emanating from holes are presented. This extended finite element method (X‐FEM) allows the representation of crack discontinuities and voids independently of the mesh. A standard displacement‐based approximation is enriched by incorporating discontinuous fields through a partition of unity method. A methodology that constructs the enriched approximation based on the interaction of the discontinuous geometric features with the mesh is developed. Computation of the stress intensity factors (SIF) in different examples involving branched and intersecting cracks as well as cracks emanating from holes are presented to demonstrate the accuracy and the robustness of the proposed technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Numerical crack propagation schemes were augmented in an elegant manner by the X‐FEM method. The use of special tip enrichment functions, as well as a discontinuous function along the sides of the crack allows one to do a complete crack analysis virtually without modifying the underlying mesh, which is of industrial interest, especially when a numerical model for crack propagation is desired. This paper improves the implementation of the X‐FEM method for stress analysis around cracks in three ways. First, the enrichment strategy is revisited. The conventional approach uses a ‘topological’ enrichment (only the elements touching the front are enriched). We suggest a ‘geometrical’ enrichment in which a given domain size is enriched. The improvements obtained with this enrichment are discussed. Second, the conditioning of the X‐FEM both for topological and geometrical enrichments is studied. A preconditioner is introduced so that ‘off the shelf’ iterative solver packages can be used and perform as well on X‐FEM matrices as on standard FEM matrices. The preconditioner uses a local (nodal) Cholesky based decomposition. Third, the numerical integration scheme to build the X‐FEM stiffness matrix is dramatically improved for tip enrichment functions by the use of an ad hoc integration scheme. A 2D benchmark problem is designed to show the improvements and the robustness. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
基于双材料界面裂纹尖端的基本解,构造扩展有限元法(eXtended Finite Element Methods, XFEM)裂尖单元结点的改进函数。有限元网格剖分不遵从材料界面,考虑3种类型的结点改进函数:弱不连续改进函数、Heaviside改进函数和裂尖改进函数,建立XFEM的位移模式,给出计算双材料界面裂纹应力强度因子(Stress Intensity Factors, SIFs)的相互作用积分方法。数值结果表明:XFEM无需遵从材料界面剖分网格,该文的方法能够准确评价双材料界面裂纹尖端的SIFs。  相似文献   

16.
17.
The cracks caused by tension are commonly observed on the upper border of loess slope. Most researchers assume that shear failure is the main reason for slope instability. The existing cracks and their development are not fully considered. The finite element method is applied widely in the numerical simulations of slope stability, but it converges and time problems must be considered when a crack occurs. The extended finite element method provides a new way to solve discontinuous media problems. In this paper, a composite model of cracking and shear failure is introduced. The extended finite element method was used to simulate the cracking in loess slope. The model used here had a unified enrichment function and the enriched freedom had a clear physical meaning. Numerical analyses were performed and the simulation results showed that the stress field redistributes. The crack propagated almost vertically at the beginning. The slope stability safety factor was less than that obtained without considering tension failure. Furthermore, the critical sliding surface was determined. This model can be used for analyzing the stability of loess slope and provides a reference for slope safety analyses.  相似文献   

18.
This article introduces a new algorithm for evaluating enrichment functions in the higher‐order hierarchical interface‐enriched finite element method (HIFEM), which enables the fully mesh‐independent simulation of multiphase problems with intricate morphologies. The proposed hierarchical enrichment technique can accurately capture gradient discontinuities along materials interfaces that are in close proximity, in contact, and even intersecting with one another using nonconforming finite element meshes for discretizing the problem. We study different approaches for creating higher‐order HIFEM enrichments corresponding to six‐node triangular elements and analyze the advantages and shortcomings of each approach. The preferred method, which yields the lowest computational cost and highest accuracy, relies on a special mapping between the local and global coordinate systems for evaluating enrichment functions. A comprehensive convergence study is presented to show that this method yields similar convergence rate and precision as those of the standard FEM with conforming meshes. Finally, we demonstrate the application of the higher‐order HIFEM for simulating the thermal and deformation responses of several materials systems and engineering problems with complex geometries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The extended finite element method (XFEM) is often used in applications that involve moving interfaces. Examples are the propagation of cracks or the movement of interfaces in two‐phase problems. This work focuses on time integration in the XFEM. The performance of the discontinuous Galerkin method in time (space–time finite elements (FEs)) and time‐stepping schemes are analyzed by convergence studies for different model problems. It is shown that space–time FE achieve optimal convergence rates. Special care is required for time stepping in the XFEM due to the time dependence of the enrichment functions. In each time step, the enrichment functions have to be evaluated at different time levels. This has important consequences in the quadrature used for the integration of the weak form. A time‐stepping scheme that leads to optimal or only slightly sub‐optimal convergence rates is systematically constructed in this work. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Numerical simulation of bi-material interfacial cracks using EFGM and XFEM   总被引:1,自引:0,他引:1  
In this paper, bi-material interfacial cracks have been simulated using element free Galerkin method (EFGM) and extended finite element method (XFEM) under mode-I and mixed mode loading conditions. Few crack interaction problems of dissimilar layered materials are also simulated using extrinsic partition of unity enriched approach. Material discontinuity has been modeled by a signed distance function whereas strong discontinuity has been modeled by two functions i.e. Heaviside and asymptotic crack tip enrichment functions. The stress intensity factors for bi-material interface cracks are numerically evaluated using the modified domain form of interaction integral. The results obtained by EFGM and XFEM for bi-material edge and center cracks are compared with those available in literature. In order to check the validity of simulations, the results have been obtained for two different ratio of Young’s modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号