首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Cyclic block copolymers (CBCs) are a new class of optical polymers made by fully hydrogenating block copolymers of styrene and conjugated diene. This class of materials has excellent optical transparency, photostability, and good thermal resistance. By changing the copolymer composition and the resulting block‐copolymer morphology, a unique set of birefringence properties can be achieved. The focus of this work was to study various sources of birefringence in block copolymers using a series of model CBC materials. One particularly interesting finding relates to the development of an ultra‐low‐phase‐retardation CBC film. Unlike the conventional approach of using an additive or blend, a CBC film prepared by melt extrusion can readily achieve near‐zero retardation in both the film plane and thickness direction. This nearly isotropic CBC film is useful as a polarizer protection film in flat‐panel displays. When used as the inner protective layer of a polarizer, CBC film helps to reduce the color shift of IPS‐LCDs at oblique angles and offer a wider viewing angle.  相似文献   

2.
Abstract— Viewing‐angle dependences of the contrast ratio and color shift of LCDs have been radically improved as evidenced by the increasing application of LCDs in high‐quality television. This paper describes the concept of optical compensation and the fundamental characteristics of the viewing‐angle property for various LC modes.  相似文献   

3.
Abstract— The current status of STN‐LCDs is described. The accomplishments and the main problems (low contrast, pure color, and slow response) are discussed. Ways to make improvements (driving methods, retardation film, and memory displays) are considered. The use of memory displays appears to be the most appropriate.  相似文献   

4.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

5.
Abstract— A polymerizable liquid crystal (PLC), the orientation of which can be frozen, is useful for making retardation layers. In this paper, a new color filter (CF) with retardation‐controlling layers made of PLC is reported. It has a positive A‐plate and a negative C‐plate, both directly stacked on a color‐filter layer. These two retardation layers exhibit good orientation ability, and function well as retarders, even when they are only 1/10 or less as thick as ordinary retardation films. The new CF also has excellent thermal stability. The change in retardation after heat treatment at 200°C for 30 min is around 5%, and there is no observable peeling. A prototype VA‐LCD made with our new CF provides good optical compensation, with the light leakage being extremely low in all azimuthal directions. This technology is very useful for making thin, highly reliable color filters for LCDs, even with other modes.  相似文献   

6.
In reflective color STN‐LCDs, it is necessary to achieve achromatic representation in single‐polarizer STN‐LCD modes. We propose an optimization method for the optical components of single‐polarizer STN‐LCD modes in order to achieve achromatic representation. By applying this method, it is shown that a contrast ratio of more than 20 can be achieved in the normally black (NB) mode. Furthermore, we prove that the normally white (NW) mode can be realized as well as an NB mode which is usually used in current reflective color STN‐LCDs. Comparing the viewing‐angle characteristics of the NW and NB modes, it was found that those of the NW mode are better than those of the NB mode. Particularly, high reflectance can be realized even at larger viewing angles in the NW mode.  相似文献   

7.
Abstract— LCDs have achieved a full‐high‐definition resolution of 1920 × 1080 (16:9), 600‐nit brightness, 3000:1 dynamic contrast ratio, 92% color gamut, 178° viewing angle, and 5‐msec response time at all gray levels and are targeted for HDTV and public‐information‐display applications. Some unique technologies, such as Cu bus line, advanced wide view polarizer, and wide‐color‐gamut lamp, were applied. A new stitching‐free technology was developed to overcome the size limitation of the photomask in both the TFT and color‐filter processes. The size of the panel (100 in.), based on the wide format (16:9), is determined by the maximum efficiency of the world's first seventh‐generation line (glass size, 1950 × 2250 mm) in LG.Philips LCD's (LPL) Paju display cluster. The issues facing 100‐in. TFT‐LCDs will be discussed.  相似文献   

8.
Abstract— Novel biaxial retardation films made from photo‐induced deformed cholesteric liquid‐crystal (LC) nanostructures using reactive mesogen mixtures (RMMs) for a viewing‐angle compensation of vertically aligned liquid‐crystal displays (VA‐LCDs) was developed. The deformed cholesteric LC nanostructure has been observed by X‐ray‐diffraction (XRD) measurement. The birefringence of the film was described well by our optical model based on a form birefringence theory. The VA‐LCDs with photo‐induced biaxial cholesteric films have excellent viewing‐angle properties.  相似文献   

9.
Abstract— Although the common twisted‐nematic liquid‐crystal displays (TN‐LCD) has excellent contrast and low color dispersion, it suffers from small viewing angle when driven into the homeotropic state. Among the many techniques proposed, in‐plane switching (IPS) has been quite effective in improving viewing angle. However, there may be difficulty in adopting conventional IPS to higher‐definition displays because it suffers from limited storage capacitance and reduced transmittance. A new comb‐on‐plane switching (COPS) electrode design is proposed. Compared to conventional IPS, COPS allows for lower switching voltage and offers advantages including naturally scalable storage capacitance, wide viewing angle with TN‐like high transmittance, and low color dispersion.  相似文献   

10.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

11.
Abstract— A novel pixel memory using an integrated voltage‐loss‐compensation (VLC) circuit has been proposed for ultra‐low‐power TFT‐LCDs, which can increase the number of gray‐scale levels for a single subpixel using an analog voltage gray‐scale technique. The new pixel with a VLC circuit is integrated under a small reflective electrode in a high‐transmissive aperture‐ratio (39%) 3.17‐in. HVGA transflective panel by using a standard low‐temperature‐polysilicon process based on 1.5‐μm rules. No additional process steps are required. The VLC circuit in each pixel enables simultaneous refresh with a very small change in voltage, resulting in a two‐orders‐of‐magnitude reduction in circuit power for a 64‐color image display. The advanced transflective TFT‐LCD using the newly proposed pixel can display high‐quality multi‐color images anytime and anywhere, due to its low power consumption and good outdoor readability.  相似文献   

12.
Abstract— In an in‐plane optical geometry, such that the average optic axis lies on the plane parallel to both substrates, the optical properties of a reflective ferroelectric liquid‐crystal (FLC) or antiferroelectric liquid‐crystal (AFLC) cell were studied within the framework of the 2 × 2 Jones matrix formalism. To obtain good achromaticity and high brightness, the cell parameters such as the molecular rotation angle and the effective phase retardation of the AFLC layer were optimized. The device performances of the AFLC cell were experimentally demonstrated in this geometry.  相似文献   

13.
Abstract— The fabrication and demonstration of field‐sequential‐color (FSC) LCDs using modules of narrow‐gap twisted‐nematic (NTN) LCDs with and without doping of newly synthesized PγCyD‐ZrO2 nanoparticles is reported. Two types of FSC‐LCDs are demonstrated: one is a direct multiplexed NTN‐LCD and the other is TFT driven. The advantages of FSC‐LCDs include their high legibility even under direct sunlight, and the mechanism for the doping of nanoparticles in LCDs is discussed.  相似文献   

14.
Abstract— 3‐D cross‐talk typically represents the ratio of image overlap between the left and right views. For stereoscopic LCDs using shutter‐glasses technology, 3‐D cross‐talk for stereoscopic LCD TV with a diagonal size of 46 in. and vertical alignment (VA) mode was measured to change from 1% to 10% when the stereoscopic display is rotated around the vertical axis. Input signals consist of the left and right images that include patterns of different amounts of binocular disparity and various gray levels. Ghost‐like artifacts are observed. Furthermore, intensities of these artifacts are observed to change as the stereoscopic display is rotated about the vertical axis. The temporal luminance of the LCD used in stereoscopic TV was found to be dependent on the viewing direction and can be considered as one cause of the phenomenon of angular dependence of performance for stereoscopic displays.  相似文献   

15.
Abstract— Image deformation caused by an outside force is observed to remain for hours at high gray levels for liquid‐crystal displays (LCDs) in the multi‐domain (MD) vertical‐alignment (VA) mode. This so‐called moving‐image‐sticking phenomenon demonstrated a non‐symmetric luminance profile for the left and right viewing direction for MDVA‐mode LCDs which have original symmetric viewing‐angle characteristics. The generation of a stable reverse‐tilt domain by an outside force was assumed to be the cause of this phenomenon, and the stability of a reverse‐tilt domain under an electric fringe field was calculated by changing the electric‐fringe‐field distribution which determines the LC tilt direction. The domain of a given tilt direction is calculated to change to other tilt direction induced by a fringe field at a low gray condition, but to remain unchanged at a high gray condition. This agrees with the observed trends of duration time of the moving‐image‐sticking phenomenon.  相似文献   

16.
Dynamic drive scheme (DDS) is known widely as passive matrix addressing that obtains both high‐speed re‐writing and a high contrast ratio in the field of cholesteric liquid crystal displays (LCDs). However, DDS has a serious problem in that the proper drive condition is very narrow and it is largely influenced by individual differences in LCDs that arise during their production. We have developed a new auto‐calibration system that adjusts both the contrast ratio and color balance automatically using capacitances of effective pixels and temperature compensation models that utilize the physical properties of cholesteric LCDs. We have managed to optimize the driving conditions between 5 and 35 °C with this method, and obtained both stable and high‐quality color images where the reflectance is 36%, contrast ratio is 8, and NTSC ratio is 20%. This auto‐calibration system has been able to greatly improve the production yield of cholesteric LCDs and made it possible to make practical use of cholesteric LCDs.  相似文献   

17.
Abstract— Fast in‐plane switching of the optic axis was realized in liquid‐crystal displays (LCDs) based on the concept of Electrically Commanded Surfaces (ECS). According to this concept, the liquid‐crystal layer in such a display is aligned by means of thin ferroelectric liquid‐crystal‐polymer (FLCP) film deposited onto the inner side of the display substrates. An electric field, applied normal to the substrates, switches the molecules of the ferroelectric film, representing the commanded surface that, via elastic forces, further transfers to the liquid‐crystal layer. The concept of electrically commanded surfaces opens the door to a new generation of advanced LCDs exhibiting extraordinary performance such as fast in‐plane switching.  相似文献   

18.
We have mass production on one kind of liquid crystal display (LCD) device with hybrid viewing‐angle (HVA), which can be switched between the wide viewing‐angle (WVA) and narrow viewing‐angle (NVA) by one button. This device adopts the single cell design that with lower cost, and utilizes the optical properties of electrically tilted LC to achieve the function of NVA display. An issue has received less attention in the past and been indeed found in the production process. It is that the off‐axis color shift will appear in NVA mode. We put forward one method to improve this issue here, which is combined with the concepts of Gray Frame Insertion (GFI) and Impulse‐type driving. By switching the voltage between two different γ values, the color shift will be perfected on the produce.  相似文献   

19.
Abstract— Field‐sequential color (FSC) is a potential technique for low‐power liquid‐crystal displays (LCDs). However, it still experiences a serious visual artifact, color break‐up (CBU), which degrades image quality. Consequently, the “Stencil Field‐Sequential‐Color (Stencil‐FSC)” method, which applies local color‐backlight‐dimming technology at a 240‐Hz field rate to FSC‐LCDs, is proposed. Using the Stencil‐FSC method not only suppressed CBU efficiently but also enhanced the image contrast ratio by using low average power consumption. After backlight signal optimization, the Stencil‐FSC method was demonstrated on a 32‐in. FSC‐LCD and effectively suppressed the CBU, which resulted in more than a 27,000:1 dynamic contrast ratio and less than 40‐W average power consumption.  相似文献   

20.
Abstract— Novel process architectures are proposed for fabricating large‐area high‐resolution TFT‐LCDs with a minimal number of process steps. A low contact resistance between Al bus lines and the transparent conductive oxide layer, necessary for large‐area panels, is obtained by inducing a self‐formed inter‐metallic compound layer at the interface without using any additional buffer or capping layers. For enhanced brightness and resolution, a new TFT array structure integrated on a color‐filter substrate, referred to as an Array on Color Filter (AOC) structure, has been developed. Good‐quality TFTs were successfully constructed on the newly developed color filter for AOC within a sufficiently wide process margin. By adopting these novel technologies, a 15.0‐in. XGA prototype panel was fabricated and shows good display performance. Thus, these novel technologies have improved cost efficiency and productivity for TFT‐LCD manufacturing, and can be applied to the development of TFT‐LCDs of extended display area and enhanced resolution, benefiting from the low resistance bus lines, the high aperture ratio, and reduction in total process steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号