首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
促进玉米秸秆酶解效率的化学预处理方法比较   总被引:2,自引:0,他引:2  
分别用八种化学方法对玉米秸秆进行预处理,将预处理后的试样用纤维素酶在最优条件下催化水解,初步比较了不同的化学方法在促进玉米秸秆酶解糖化方面的效果。通过比较各试样酶解后产糖量大小,得到最佳的预处理方案:采用0.176%(m/V)NaOH及0.9%(V/V)H2O2混合液在常温下按固液比1∶50振荡作用24 h,即在纤维素酶用量为50 FPU/g时,产糖量可从0.055 g/g提升到0.333 g/g,提高了83.51%;此时的木质素降解量亦为最大,达到了49.8%,此结果表明木质素的降解有利于纤维素酶敏感性的提高。  相似文献   

2.
BACKGROUND: The fermentable sugars in lignocellulose are derived from cellulose and hemicellulose, which are not readily accessible to enzymatic hydrolysis because of their biological resistance, so that pretreatment of lignocellulose is needed for this process. In this work, a novel lignocellulose pretreatment method using alkali solution assisted by photocatalysis was investigated. RESULTS: The reaction conditions of nano‐TiO2 dosage and photocatalysis time were optimized at 2 g L?1 and 1 h, respectively. After pretreatment under these conditions, cellulose in rice straw was increased from 37.5% to 71.5%, and lignin decreased from 18.5% to 9.0%. The results of X‐ray diffraction (XRD), Fourier transform infrared (FT‐IR) and scanning electron microscopy (SEM) analysis showed that the physical properties and microstructure of the straw were changed by this pretreatment, which favored the following enzymatic hydrolysis. The enzymatic hydrolysis rate of the straw pretreated using this technology was verified to be 73.96%, which was 2.56 times higher than that obtained with the alkali procedure. CONCLUSION: The proposed photocatalysis pretreatment technology was more efficient at degrading the lignin and hemicellulose in rice straw than alkali pretreatment, making it more readily available for the following enzymatic hydrolysis process. Copyright © 2009 Society of Chemical Industry  相似文献   

3.
The enzymic hydrolysis of cellulosic waste material from industrial origins using commercial Tricoderma viride cellulase gave yields approaching 80% conversion following pretreatments. The yield was a function of the purity of the substrate and the pretreatments imposed. These included sterilisation, heating, ball-milling and alkali treatment. Highest yields of glucose or enzyme hydrolysis were achieved with a 4% solka floc suspension following pretreatment in 5% alkali, when the enzyme mix was 0.22IU cm?3 of filter paper activity, 0.07IU cm?3Cx enzyme activity and 0.14IU cm?3 of β-glucosidase activity. Kraft pulp also gave up to 75% yields by this method.  相似文献   

4.
BACKGROUND: The objective of this work is to develop an efficient pretreatment method that can help enzymes break down the complex carbohydrates present in wheat straw to sugars, and to then ferment of all these sugars to ethanol. RESULTS: The yield of sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg g?1 straw, 121 °C, 1 h) and enzymatic hydrolysis (45 °C, pH 5.0, 120 h) using a cocktail of three commercial enzyme preparations (cellulase, β‐glucosidase, and xylanase) at the dose level of 0.15 mL of each enzyme preparation g?1 straw was 568 ± 13 mg g?1 (82% yield). The concentration of ethanol from lime pretreated enzyme saccharified wheat straw (78 g) hydrolyzate by recombinant Escherichia coli strain FBR5 at pH 6.5 and 35 °C in 24 h was 22.5 ± 0.6 g L?1 with a yield of 0.50 g g?1 available sugars (0.29 g g?1 straw). The ethanol concentration was 20.6 ± 0.4 g L?1 with a yield of 0.26 g g?1 straw in the case of simultaneous saccharification and fermentation by the E. coli strain at pH 6.0 and 35 °C in 72 h. CONCLUSION: The results are important in choosing a suitable pretreatment option for developing bioprocess technologies for conversion of wheat straw to fuel ethanol. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
利用农作物秸秆进行厌氧发酵生产沼气是解决我国农村能源紧张的重要途径,然而秸秆中难以降解的木质纤维结构导致在发酵过程中甲烷转化率较低。利用自行设计的可控性恒温发酵装置,以玉米秸秆为发酵原料,分析了在不同温度条件下氢氧化钠(NaOH)预处理对秸秆木质纤维结构以及厌氧发酵产气效率的影响。结果表明,NaOH预处理能够显著降低玉米秸秆的木质纤维素含量,与未预处理的秸秆相比,经NaOH处理后的秸秆纤维素含量降低了24.4%~33.2%,半纤维素含量降低了14.2%~52.4%,木质素含量降低了9.3%~29.3%。在6%、8%和10%浓度中,经8%NaOH处理的秸秆在55℃下的甲烷产量最高,达到188.7 ml CH4·(g VS)-1,较未处理的增加了84.2%,因此可作为提高秸秆厌氧发酵产气效率的预处理方法。  相似文献   

6.
Alkaline peroxide pretreatment for the delignification of rice straw was optimised by varying the concentrations of H2O2 and NaOH and changing the temperature and duration of the pretreatment. Changes in the lignin content, content of total carbohydrates and weight loss were measured during the pretreatments. Maximum delignification of 62% was obtained by pretreating rice straw at 50°C for 5h with 1.5% (w/v) NaOH and 1% (v/v) H2O2, The preferential loss of hemicellulose and lignin from the straw resulted in an increase in the cellulose content of the insoluble residue after pretreatment from 47% (untreated) to 67.79% (treated). The product of this treatment is characterised by having higher cellulose digestibility than untreated rice straw. It also has use as a carbohydrate source in ruminant feed since the in-vivo digestibility by the cow increased from 56.85 % to 76.54% (P < 0.001). The treated rice straw could also be used for commercial process such as the generation of Single Cell Protein. Growth of Sporotrichum pulverulentum on treated rice straw gave a protein product of 24.41 % as compared to 3.8% on untreated rice straw.  相似文献   

7.
探讨了添加1‰吐温-80非离子表面活性剂和不同浓度碱预处理对稻草秸秆木质素及纤维素的影响,并对预处理前后的稻草进行了X射线衍射光谱(XRD)分析,从结晶度的变化综合分析了预处理对纤维素酶解的影响。实验结果表明:在30℃下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至6.5%(较未处理稻草下降了41.9%),灰分值仅占6.9%,具有较好的粗饲料价值;在121℃(0.1 MPa)下添加1‰吐温-80非离子表面活性剂时,用4%NaOH预处理稻草秸秆,木质素含量降至2.8%(较未处理稻草下降了74.5%),酶解还原糖达到393.9 mg/g,纤维素糖化率为59.3%(较未处理稻草提高了2.4倍)。XRD分析显示,在较温和的条件下,低浓度碱预处理稻草秸秆,对纤维素结晶区带来的影响相对于无定形区弱,不足以引起纤维素结晶度的降低。  相似文献   

8.
《分离科学与技术》2012,47(8):1809-1829
Abstract

One chlorophyll rich fraction and two lignin preparations were separated from perennial grass and cocksfoot grass by sequential three‐stage treatments with 80% ethanol containing 0.2% NaOH, 2.5% H2O2?0.2% EDTA containing 1.5% NaOH, and 2.5% H2O2?0.2% TAED containing 1.0% NaOH at 75°C for 3 h, respectively, which released 4.6 and 3.6% chlorophyll rich fraction, 2.3 and 5.8%, and 0.9 and 1.0% lignin preparations, except for releasing 8.0 and 10.4%, 79.1 and 77.0%, and 12.9 and 12.5% of the original hemicelluloses, respectively. The lignin fractions obtained from the two different grasses had very similar molecular weights and structural composition. The NMR spectra of the lignin preparations revealed the presence of p‐hydroxyphenyl, guaiacyl, and syringyl structures, and the lignin in chlorophyll rich fraction contained more guaiacyl and syringyl units than p‐hydroxyphenyl unit, whereas the reverse trend was found in the two lignin preparations. The lignin preparations are distinguished with straw and wood lignins by relatively higher contents of p‐hydroxyphenyl unit and lower amounts of condensed units (β‐5 and 5‐5′) and resinol units (β‐β). This difference in distribution of structural units indicated some structural heterogeneity between grass and straw/or wood lignin.  相似文献   

9.
BACKGROUND: Because ethanol organosolv pulping requires high pressure and is highly volatile, an atmospheric autocatalytic glycerol organosolv pretreatment process has been investigated. Enzymatic hydrolysis of wheat straw pretreated using this method was evaluated to explore a novel, economically competitive and environmentally friendly pretreatment technology for bioconversion of lignocellulosic biomass. The method also provides economical utilization of industrial glycerol, helping to cope with the challenge of the excess production of glycerol and to further defray the cost of biodiesel production. RESULTS: With preliminary optimization of the parameters in the pretreatment process, pretreatment performed at 240 °C for 4 h with the glycerol addition of 15 g g?1 dry feedstock and wash at 80 °C led to high recovery of cellulose (95%) and good removal of lignin (>70%), which formed, respectively, 80% and 10% of the pulp. The enzymatic hydrolysis of the pretreated wheat straw yielded 90% of theoretically achievable sugar after 24 h and 92% after 48 h. CONCLUSION: Atmospheric autocatalytic glycerol organosolv pretreatment removed significant amounts of hemicellulose and lignin without affecting good cellulose recovery. The proposed novel strategy increased the susceptible of wheat straw to enzyme attack and led to enzymatic hydrolysis that was comparable with that achieved using ethanol organosolv pretreatment. Copyright © 2007 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Ethanol‐based organosolv fractionation of lignocellulosic biomass is an effective pretreatment technology for enzymatic cellulose hydrolysis to produce sugars and lignin within a biorefinery. This study focuses on the catalytic effect of H2SO4, HCl, and MgCl2 on organosolv pretreatment of willow wood and wheat straw. RESULTS: The use of catalysts improved fractionation of both feedstocks. The maximum enzymatic cellulose digestibility obtained was 87% for willow wood (using 0.01 mol L?1 H2SO4 as catalyst) and 99% for wheat straw (0.02 mol L?1 HCl). Non‐catalytic organosolv fractionation at identical conditions resulted in 74% (willow wood) and 44% (wheat straw) glucose yield by enzymatic hydrolysis. Application of catalysts in organosolv pretreatment was particularly effective for wheat straw. The influence of the acid catalysts was found to be primarily due to their effect on the pH of the organosolv liquor. Acid catalysts particularly promoted xylan hydrolysis. MgCl2 was less effective than the acid catalysts, but it seemed to more selectively improve delignification of willow wood. CONCLUSION: Application of catalysts in organosolv pretreatment of willow wood and wheat straw was found to substantially improve fractionation and enzymatic digestibility. The use of catalysts can contribute to achieving maximum utilization of lignocellulosic biomass in organosolv‐based biorefineries. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Ball-milled and enzyme lignins were extracted with 90 and 50% dioxane–water from 6 days ball-milled wheat straw, and subsequently cellulase-treated straw residues, respectively. The crude lignin preparations were purified using a two-step precipitation method instead of the traditional ether precipitation procedure, and fractionated into pure milled lignin (PML), pure enzyme lignin (PEL), hemicellulose-rich milled lignin (HRML), lignin-rich enzyme lignin (LREL), and solubilized lignin during enzyme treatment (SLET) fractions. The five lignin fraction were studied using spectroscopic and degradative tecyhniques. The PML and PEL fractions showed very low content of associated polysaccharides (2.36–2.86%). The PML is mainly composed of β-O-4 ether bonds in the lignin structural units. The less common β-5 and β-β carbon–carbon linkages are also present. The results obtained also indicated that the lignins in wheat straw cell walls appeared to be very closely associated to p-coumaric and ferulic acid, and glucuronic acid or 4-O-methylglucuronic acid. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1633–1641, 1998  相似文献   

12.
Structural characteristics of lignocellulosic biomass such as surface area, pore volume, crystallinity, hemicellulose, and lignin content significantly affect the yield of fermentable sugars for bioethanol production. In the present work, the effect of dilute acid pretreatment was studied on structural characteristics of wheat straw, using different combinations of process variables (temperature, time, and acid concentration). Pretreated wheat straw (PWS) exhibited higher available surface area and pore volume along with low hemicellulose and lignin content. Crystallinity index (CrI) of biomass at different pretreatment conditions showed an increased trend followed by sharp decrease at high temperature (190°C) conditions. Maximum increase in surface area (7.1 m2/g compared to 4.0 m2/g for untreated wheat straw) was obtained at pretreatment conditions of 180°C temperature, 0.5% (v/v) acid, and 7 min time. SEM imaging of biomass revealed that pore breaking, compression of pores, and partial pore blocking in the case of high temperature (190°C) pretreatment conditions may be the reason behind decreased surface area of biomass. FT-IR analysis showed almost complete hemicellulose removal and acid-soluble lignin removal after dilute acid pretreatment but insufficient removal of acid insoluble lignin.

[Supplementary material is available for this article. Go to the publisher's online edition of Chemical Engineering Communications for the following free supplemental resource: figure showing XRD pattern of biomass with respect to different pretreatment conditions.]  相似文献   

13.
以玉米秸秆为原料,先经复合菌系进行好氧生物预处理,然后接种厌氧污泥进行厌氧发酵,考察了预处理时间对厌氧发酵的影响,并测定木质纤维素结构及含量变化、关键性酶活、微生物多样性和厌氧发酵酸化产量。研究结果表明:随着预处理时间的延长,玉米秸秆的结构逐渐被破坏,木质素过氧化物酶活性逐渐降低,木聚糖酶和纤维素酶活性逐渐升高,最高分别达0.879和0.025 7 U/mg。放线菌、芽孢杆菌和曲霉菌是秸秆好氧生物预处理中的优势菌群。玉米秸秆经好氧生物预处理2 d,厌氧发酵产酸效果最佳,乙醇和挥发性脂肪酸产量为249.3 mg/g,比未处理提高了46.73%;玉米秸秆经好氧生物预处理5 d,乙醇和挥发性脂肪酸产量为138.2 mg/g,比未处理降低了18.66%。过长的玉米秸秆好氧预处理时间会使玉米秸秆中半纤维素、纤维素过度降解,这是造成玉米秸秆厌氧发酵产酸量下降的主要原因。以能源化、资源化为目的的玉米秸秆厌氧发酵预处理时,利用复合菌系好氧生物处理作为其预处理方法,应严格控制预处理时间,避免因为纤维素、半纤维素过度降解导致的产品产率下降问题。  相似文献   

14.
The content and structure of lignin have been considered as important factors that affect both pretreatment and enzymatic hydrolysis of lignocellulosic biomass. In this work, wheat stems (WS) were pretreated using mild alkali including green liquor (GL) and sodium carbonate (SC). The results indicate that GL pretreatment exhibits better delignification selectivity and higher enzymatic digestibility than SC pretreatment. Analysis of 1H–13C HSQC NMR and FTIR on cellulolytic enzyme lignin (CEL) preparations isolated from untreated and pretreated WS also proves that a certain amount of lignin degrades which leads to a decrease of β-O-4′ linkages. Under mild alkaline conditions, more guaiacyl units in lignin are removed than syringyl units, which results in a higher condensation degree and S/G ratio of CELs isolated from GL- and SC-pretreated stems. Compared with p-coumarate structures, ferulates in lignin are more stable under mild alkaline conditions.  相似文献   

15.
Enzymatic hydrolysis and fermentation methods were evaluated on alkaline peroxide pretreated shea tree sawdust conversion to ethanol. Optimum pretreatment conditions of 120 °C reaction temperature, 30 min reaction time, and 20 mL L?1 of water hydrogen peroxide concentration (1%(v/v)H2O2) solubilized 679 g kg?1 of hemicellulose and 172 g kg?1 of lignin. 617 g kg?1 cellulose was retained in the solid fraction. The maximum yield of reducing sugar with optimized enzyme loadings by two enzyme preparations (cellulase and β-glucosidase) was 165 g kg?1 of dry biomass. The ethanol yield was 7.35 g L?1 after 72 h incubation period under the following conditions: 2% cellulose loading, enzyme concentration was 25 FPU (g cellulose)?1 loading, yeast inoculums was 10% (v/v), 32 oC, and pH 4.8. The pretreatments gave information about the hindrances caused by lignin presence in lignocellulosic materials and that hemicelluloses are better hydrolyzed than lignin, thereby enhancing enzymatic digestibility of the sawdust material.  相似文献   

16.
We have studied the bio-electroreduction of oxygen based on direct electron transfer (DET) between laccase and the electrode. Laccase enzymes from two different sources, namely, tree laccase from Rhus vernicifera, and fungal laccase from Trametes hirsuta were used in the study. The gas-diffusion cathode was made using a mixture of teflonized carbon and untreated carbon black, with a nickel mesh that served as a current collector, sandwiched between a hydrophobic gas diffusion layer, and a hydrophilic biocatalytic layer with physically adsorbed laccase enzyme. High current densities: up to 1 mA cm−2 under oxygen (for bio-electrocatalytic oxygen reduction) and increased stability (up to 30 days) has been achieved using teflonized carbon blacks at gas–electrode interface, high surface area carbon black for loading the enzyme.Gas diffusion laccase-catalyzed cathode demonstrates a number of advantageous properties including good adhesion, biocompatibility and high bio-electrocatalytic properties. An open circuit potential (OCP) of 600 mV at pH 7 for tree laccase (R. vernicifera) and 725 mV at pH 5 for fungal laccase (T. hirsuta) at zero current densities were obtained with respect to SHE reference electrode. Tafel plots obtained confirmed different DET characteristics for the two sources of laccase enzymes, which could suggest different mechanism of charge transfer: 4-electron electroreduction of oxygen using fungal laccase and 2-electron electroreduction using tree laccase. The performance of the cathode was studied in galvanostatic mode and polarization curves at various conditions are reported including those obtained under air and neat oxygen feed from the gas phase.  相似文献   

17.
对玉米秸秆进行氢氧化钠/蒽醌(NaOH/AQ)去木质化预处理,考察了预处理温度、时间和NaOH用量对玉米秸秆脱木质素程度的影响,并探讨了脱木质素程度对提高预处理后物料酶解性能的影响。L9(34)正交试验得出较适宜预处理工艺条件为:温度160℃,时间60 min,NaOH用量(以绝干原料质量计)2.8%;其他条件为AQ用量0.05%,固液比1:5(g:mL),此时木质素脱除率为75%,酶解后聚糖转化率达到73.79%。随着物料脱木质素程度的提高,其酶解效率相应增加;当木质素脱除率达到一定程度后,预处理后的聚糖转化率达到最大值,继续提高木质素脱除率,聚糖转化率反而降低。响应面优化的酶水解工艺条件为纤维素酶用量30 FPU/g,β-葡萄糖苷酶10 IU/g,反应时间72 h,温度50℃,底物质量分数2.5%,此时还原糖得率为85.62%。对酶解液进行HPLC分析,酶解液中的葡萄糖质量浓度为14.83 g/L,木糖质量浓度为4.83 g/L。XRD分析显示,预处理前后纤维素的晶型没有变化,而结晶度由31.40%提高至46.91%,表明物料中木质素和半纤维素发生了不同程度的溶出。  相似文献   

18.
Abstract

The feasibility of using Fourier transform near infrared spectroscopy (FT-NIR) to rapidly determine the lignin and extractive content of various wood species (including softwoods and hardwoods) was investigated. Partial Least Square regression analyses were performed to describe the relationships between the data sets of wet laboratory chemical data and the FT-NIR spectra. The selection of relevant wavenumbers combined with the appropriate data pre-processing methods produced satisfactory prediction models. The test statistics (R2 , RMSECV, RMSEP, RPD) improved compared with the models over the wave number range 7500 cm?1 to 4000 cm?1. Automatic selection was superior to manual selection. The predicted lignin and extractive content models, using the full cross-validation in the appropriate wave number ranges (in cm?1) of 5450.1 to 4246.7, 6102.1 to 4597.7, 6252.4 to 4246.7, and 6252.4 to 6098.1 using the spectral data preprocessing methods of the straight-line subtraction, minimum–maximum normalization, and first derivative + vector normalization, were established. The high R2 values were 0.9838, 0.9809, and 0.9625, respectively. The low RMSECV values were 0.425%, 0.452%, and 0.185%, respectively. RPD values were 7.86, 7.25, and 5.17, respectively. Predictions were very good, with R2 of 0.9775, 0.9751, and 0.9521; RMSEP of 0.418%, 0.403%, and 0.206%; and RPD of 6.78, 6.7, and 4.57 for the lignin, 1% sodium hydroxide extractive, and ethanol-benzene extractive models, respectively.  相似文献   

19.
BACKGROUND: The present work aims to study the production of lignin peroxidase (LiP) enzyme by Comamonas sp UVS using various media, and lignocellulosic waste materials, and its effect on decolorization of Direct Blue GLL (DBGLL). RESULTS: Yeast extract medium was found to be more effective for the production of LiP and also for the decolorization of DBGLL. The bagasse powder along with yeast extract induced LiP activity. Comamonas sp UVS decolorized DBGLL dye (50 mg L?1) within 13 h at static condition in YE broth. It could degrade up to 300 mg L?1 of dye within 55 h. The maximum rate (Vmax) of decolorization was 12.41 ± 0.55 mg dye g cell?1 h?1 with the Michaelis constant (Km) value as 6.20 ± 0.27 mg L?1. The biodegradation was monitored by UV‐Vis, GC‐MS and HPLC. CONCLUSION: The use of agricultural by‐products for the activity enhancement of the ligninolytic enzymes is a cost effective process. It also resolves the problem of the disposal of agro‐residues. This system can be applied for the degradation of different recalcitrant compounds. Copyright © 2008 Society of Chemical Industry  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号