首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Composition B (Comp B) detonation residuals pose environmental concern to the U.S. Army because hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a constituent, has contaminated groundwater near training ranges. To mimic their dissolution on surface soils, we dripped water at 0.51 ml/h onto individual Comp B particles (0.1-2.0 mg) collected from the detonation of 81-mm mortars. Analyses of the effluent indicate thatthe RDX and 2,4,6-trinitrotoluene (TNT) in Comp B do not dissolve independently. Rather, the relatively slow dissolution of RDX controls dissolution of the particle as a whole by limiting the exposed area of TNT. Two dissolution models, a published steady-flow model and a drop-impingement model developed here, provide good agreementwith the data using RDX parameters for time scaling. They predict dissolution times of 6-600 rainfall days for 0.01-100 mg Comp B particles exposed to 0.55 cm/h rainfall rate. These models should bracket the flow regimes for dissolution of detonation residuals on soils, but they require additional data to validate them across the range of particle sizes and rainfall rates of interest.  相似文献   

2.
Knowledge of explosives sorption and transformation processes is required to ensure that the proper fate and transport of such contaminants is understood at military ranges and ammunition production sites. Bioremediation of 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and related nitroaromatic compounds has met with mixed success, which is potentially due to the uncertainty of how energetic compounds are bound to different soil types. This study investigated the dissolution and sorption properties of TNT and RDX explosives associated with six different soil types. Understanding the associations that explosives have with a different soil type assists with the development of conceptual models used for the sequestration process, risk analysis guidelines, and site assessment tools. In three-way systems of crystalline explosives, soil, and water, the maximum explosive solubility was not achieved due to the sorption of the explosive onto the soil particles and observed production of transformation byproducts. Significantly different sorption effects were also observed between sterile (gamma-irradiated) and nonsterile (nonirradiated) soils with the introduction of crystalline TNT and RDX into soil-water systems.  相似文献   

3.
RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are cyclic nitramines ((CH2NNO2)n; n = 3 or 4, respectively) widely used as energetic chemicals. Their extensive use led to wide environmental contamination. In contrast to RDX, HMX tends to accumulate in soils due to its unique recalcitrance. In the present study, we investigated the potential of zerovalent iron (ZVI) to transform HMX under anoxic conditions. HMX underwent a rapid transformation when added in well-mixed anoxic ZVI-H2O batch systems to ultimately produce formaldehyde (HCHO), ammonium (NH4+), hydrazine (NH2NH2), and nitrous oxide (N2O). Time course experiments showed that the mechanism of HMX transformation occurred through at least two initial reactions. One reaction involved the sequential reduction of N-NO2 groups to the five nitroso products (1NO-HMX, cis-2NO-HMX, trans-2NO-HMX, 3NO-HMX, and 4NO-HMX). Another implied ring cleavage from either HMX or 1NO-HMX as demonstrated by the observation of methylenedinitramine (NH(NO2)CH2NH(NO2)) and another intermediate that was tentatively identified as (NH(NO2)CH2N(NO)CH2NH-(NO2)) or its isomer (NH(NO)CH2N(NO2)CH2NH(NO2)). This is the first study that demonstrates transformation of HMX by ZVI to significant amounts of NH2NH2 and HCHO. Both toxic products seemed to persist under reductive conditions, thereby suggesting that the ultimate fate of these chemicals, particularly hydrazine, should be understood prior to using zerovalent iron to remediate cyclic nitramines.  相似文献   

4.
Recently we demonstrated that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a trimer of methylene nitramine (CH2=N-NO2) undergoes spontaneous decomposition following an initial microbial attack using a mixed microbial culture at pH 7 in the presence of glucose as carbon source. The present study describes whether the second cyclic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), a more strained tetramer of CH2=N-NO2, degrades similarly using sludge of the same source. Part of HMX biotransformed to give products that are tentatively identified as the nitroso derivatives octahydro-1-nitroso-3,5,7-trinitro-1,3,5,7-tetrazocine (mNs-HMX) and octahydro-1,3-dinitroso-5,7-dinitro-1,3,5,7-tetrazocine and its isomer octahydro-1,5-dinitroso-3,7-dinitro-1,3,5,7-tetrazocine (dNs-HMX). Another fraction of HMX biotransformed, apparently via ring cleavage, to produce products that are tentatively identified as methylenedinitramine (O2NNHCH2-NHNO2) and bis(hydroxymethyl)nitramine ((HOCH2)2NNO2). None of the above intermediates accumulated indefinitely; they disappeared to predominantly form nitrous oxide (N2O) and formaldehyde (HCHO). Formaldehyde biotransformed further to eventually produce carbon dioxide (14CO2). Nitrous oxide persisted in HMX microcosms containing glucose but denitrified rapidly to nitrogen in the absence of glucose. The presence of nitrous oxide was accompanied by the presence of appreciable amounts of hydrogen sulfide, a known inhibitor of denitrification.  相似文献   

5.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, I) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) hydrolyze at pH > 10 to form end products including NO2-, HCHO, HCOOH, NH3, and N2O, but little information is available on intermediates, apart from the tentatively identified pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). Despite suggestions that RDX and HMX contaminated groundwater could be economically treated via alkaline hydrolysis, the optimization of such a process requires more detailed knowledge of intermediates and degradation pathways. In this study, we hydrolyzed the monocyclic nitramines RDX, MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), and HMX in aqueous solution (pH 10-12.3) and found that nitramine removal was accompanied by formation of 1 molar equiv of nitrite and the accumulation of the key ring cleavage product 4-nitro-2,4-diazabutanal (4-NDAB, O2NNHCH2NHCHO). Most of the remaining C and N content of RDX, MNX, and HMX was found in HCHO, N2O, HCOOH, and NH3. Consequently, we selected RDX as a model compound and hydrolyzed it in aqueous acetonitrile solutions (pH 12.3) in the presence and absence of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to explore other early intermediates in more detail. We observed a transient LC-MS peak with a [M-H] at 192 Da that was tentatively identified as 4,6-dinitro-2,4,6-triaza-hexanal (O2NNHCH2NNO2CH2NHCHO, III) considered as the hydrolyzed product of II. In addition, we detected another novel intermediate with a [M-H] at 148 Da that was tentatively identified as a hydrolyzed product of III, namely, 5-hydroxy-4-nitro-2,4-diaza-pentanal (HOCH2NNO2CH2NHCHO, IV). Both III and IV can act as precursors to 4-NDAB. In the case of the polycyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), denitration (two NO2-) also led to the formation of HCOOH, NH3, and N2O, but neither HCHO nor 4-NDAB were detected. The results provide strong evidence that initial denitration of cyclic nitramines in water is sufficient to cause ring cleavage followed by spontaneous decomposition to form the final products.  相似文献   

6.
The feasibility of remediating a high explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), using hybrid poplar trees (Populus deltoides x nigra, DN34) was investigated. The fate, transport, and toxicity were determined. HMX was taken up by poplar cuttings from hydroponic solutions in long-term experiments (65 days) without evidence of toxicity. HMX was not toxic to actively growing hybrid poplar cuttings, even under saturated conditions. The measured log Kow for HMX was 0.19, less than other explosives, TNT, and RDX. However, the calculated transpiration stream concentration factor (TSCF) and root concentration factor (RCF) for HMX from an uptake study using radiolabeled [U-14C]HMX were 0.21 +/- 0.07 and 5.55 +/- 1.78 mL/g, respectively, both of which were intermediate between the values for TNT and ROX in previous reports. A 70% uptake of [U-14C]HMX was translocated and accumulated in leaves, and no metabolites were observed during a 65-day exposure using radiochromatography of plant tissue extracts. Most of the accumulated HMX (57%) in dried (fallen) poplar leaves was leached by deionized water after 5 days. Bioaccumulation in poplar trees and resolublization of HMX from leaves would be of significant ecological concern, and phytoremediation may not be warranted as a treatment option unless other processes occur under field conditions that degrade HMX to innocuous end products (e.g., photolysis, hydrolysis, or microbial degradation).  相似文献   

7.
Mixtures of energetic compounds pose a remediation problem for munitions-contaminated soil. Although treatment with zerovalent iron (Fe0) can be effective, RDX and TNT are more readily destroyed than HMX. Adding didecyldimethylammonium bromide (didecyl) at 2% w/v with 3% (w/v) Fe0 to a 20% slurry of Los Alamos National Laboratory soil containing solid-phase HMX (45 000 mg/kg) resulted in >80% destruction within 6 days. Because the HMX concentration did not increase in solution and the didecyl equilibrium concentration was well below the critical micelle concentration, we conclude thatthe solution primarily contained didecyl monomers. The adsorption isotherm for didecyl on iron is consistent with electrostatic adsorption of monomers and some hydrophobic partitioning at low equilibrium concentrations. Fe0 pretreated with didecyl was superior to Fe0 alone or mixed with didecyl in removing HMX from solution, but it was less effective than Fe0 + didecyl when solid-phase HMX was present. Reseeding HMX to mimic dissolution indicated an initial high reactivity of didecyl-pretreated Fe0, but the reaction slowed with each HMX addition. In contrast, reaction rates were lower but reactivity was maintained when Fe0 and didecyl were added together and didecyl was included in fresh HMX solutions. Destruction of solid-phase HMX requires low didecyl concentrations in solution so that hydrophobic patches are maintained on the iron surface.  相似文献   

8.
Contamination of soils and groundwater with energetic compounds has been documented at many former ammunition manufacturing plants and ranges. Recent research at Colorado State University (CSU) has demonstrated the potential utility of electrolytic degradation of organic compounds using an electrolytic permeable reactive barrier (e-barrier). In principle, an electrolytic approach to degrade aqueous energetic compounds such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or 2,4,6-trinitrotoluene (TNT) can overcome limitations of management strategies that involve solely oxidation or reduction, through sequential oxidation-reduction or reduction-oxidation. The objective of this proof-of-concept research was to evaluate transformation of aqueous phase RDX and TNT in flow-through electrolytic reactors. Laboratory experiments were conducted using six identical column reactors containing porous media and expanded titanium-mixed-metal-oxide electrodes. Three columns tested TNT transformation and three tested RDXtransformation. Electrode sequence was varied between columns and one column for each contaminant acted as a no-voltage control. Over 97% of TNT and 93% of RDX was transformed in the reactors under sequential oxidation-reduction. Significant accumulation of known degradation intermediates was not observed under sequential oxidation-reduction. Removal of approximately 90% of TNT and 40% of RDX was observed under sequential reduction-oxidation. Power requirements on the order of 3 W/m2 were measured during the experiment. This suggests that an in-situ electrolytic approach may be cost-practical for managing groundwater contaminated with explosive compounds.  相似文献   

9.
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is a recalcitrant energetic chemical that tends to accumulate in soil, close to the surface. The present study describes the aerobic biodegradability of HMX using Phanerochaete chrysosporium. When added to 7 day old static P. chrysosporium liquid cultures, HMX (600 nmol) degraded within 25 days of incubation. The removal of HMX was concomitant with the formation of transient amounts of its mono-nitroso derivative (1-NO-HMX). The latter apparently degraded via two potential routes: the first involved N-denitration followed by hydrolytic ring cleavage, and the second involved alpha-hydroxylation prior to ring cleavage. The degradation of 1-NO-HMX gave the ring-cleavage product 4-nitro-2,4-diazabutanal (NDAB), nitrite (NO2 -), nitrous oxide (N2O), and formaldehyde (HCHO). Using [14C]-HMX, we obtained 14CO2 (70% in 50 days), representing three C atoms of HMX. Incubation of real soils, contaminated with either HMX (403 micromol kg(-1)) (military base soil) or HMX (3057 micromol kg(-1)), and RDX (342 micromol kg(-1)) (ammunition soil) with the fungus led to 75 and 19.8% mineralization of HMX (liberated 14CO2), respectively, also via the intermediary formation of 1-NO-HMX. Mineralization in the latter soil increased to 35% after the addition of glucose, indicating that a fungus-based remediation process for heavily contaminated soils is promising. The present findings improve our understanding about the degradation pathway of HMX and demonstrate the utility of using the robust and versatile fungus P. chrysosporium to develop effective remediation processes for the removal of HMX.  相似文献   

10.
The sorption-desorption behavior and long-term fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was examined in sterilized and nonsterilized topsoil. Results of this study indicate that although RDX is not extensively sorbed by the topsoil (Ks(d) of 0.83 L/kg), sorption is nearly irreversible. Furthermore, there was no difference in the sorption behavior for sterile and nonsterile topsoil. However, over the longterm, RDX completely disappeared within 5 weeks in nonsterile topsoil, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) metabolites formed in the aqueous phase. Over the same period, recovery of RDX from sterile topsoil was high (55-99%), and the nitroso metabolites were not detected. Only traces of RDX were mineralized to CO2 and N2O by the indigenous microorganisms in nonsterile topsoil. Of the RDX that was mineralized to N2O, one N originated from the ring and the other from the nitro group substituent, as determined using N15 ring-labeled RDX. However, N2O from RDX represented only 3% of the total N2O that formed from the process of nitrification/denitrification.  相似文献   

11.
12.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a common contaminant of soil and water at military facilities. The present study describes degradation of RDX with zerovalent iron nanoparticles (ZVINs) in water in the presence or absence of a stabilizer additive such as carboxymethyl cellulose (CMC) or poly(acrylic acid) (PAA). The rates of RDX degradation in solution followed this order CMC-ZVINs > PAA-ZVINs > ZVINs with k1 values of 0.816 +/- 0.067, 0.082 +/- 0.002, and 0.019 +/- 0.002 min(-1), respectively. The disappearance of RDX was accompanied by the formation of formaldehyde, nitrogen, nitrite, ammonium, nitrous oxide, and hydrazine by the intermediary formation of methylenedinitramine (MEDINA), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), DNX (hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine), TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). When either of the reduced RDX products (MNX or TNX) was treated with ZVINs we observed nitrite (from MNX only), NO (from TNX only), N2O, NH4+, NH2NH2 and HCHO. In the case of TNX we observed a new key product that we tentatively identified as 1,3-dinitroso-5-hydro-1,3,5-triazacyclo-hexane. However, we were unable to detect the equivalent denitrohydrogenated product of RDX and MNX degradation. Finally, during MNX degradation we detected a new intermediate identified as N-nitroso-methylenenitramine (ONNHCH2NHNO2), the equivalentof methylenedinitramine formed upon denitration of RDX. Experimental evidence gathered thus far suggested that ZVINs degraded RDX and MNX via initial denitration and sequential reduction to the corresponding nitroso derivatives prior to completed decomposition but degraded TNX exclusively via initial cleavage of the N-NO bond(s).  相似文献   

13.
目的分析不同粒度对三七粉末主要有效成分在体外溶出度方面的影响。方法采用高效液相色谱法法测定不同粒度三七粉末,包括粗粉(24~65目)、中粉(65~80目)和细粉(80~200目),在磷酸缓冲液、水和醋酸缓冲液中主要有效成分的溶出量,并绘制相应的溶出曲线以分析影响。结果在不同溶出介质中三七中粉和细粉在短时间内可以达到溶出平衡,而三七粗粉在30 min才达到溶出平衡;在3种溶出介质中三七中粉累积溶出度均为最大;在不同介质中三七总皂苷溶出率为:pH6.8的磷酸缓冲溶液水(pH=5.13)pH4.5的醋酸缓冲溶液。结论建议三七粉碎入药时,磨成中粉进行使用。  相似文献   

14.
15.
In an earlier study, we reported that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegraded with domestic anaerobic sludge to produce a key RDX ring cleavage intermediate that was tentatively identified as methylenedinitramine (O2NNHCH2NHNO2) using LC/MS with negative electrospray ionization (ES-). Recently, we obtained a standard material of methylenedinitramine and thus were able to confirm its formation as the key initial RDX intermediate. In water alone or in the presence of sludge, methylenedinitramine decomposed to N20 and HCHO. Only in the presence of sludge HCHO converted further to carbon dioxide. To test our hypothesis that water was involved in the formation of methylenedinitramine during incubation of RDX with sludge, we allowed the energetic compound to biodegrade in several D2O/H2O solutions (90, 50, and 0% v/v). We observed three distinctive deprotonated or dedeuterated mass ions at 135, 136, and 137 Da that were attributed to the formation of nondeuterated (H-methylenedinitramine), monodeuterated (D1-methylenedinitramine), and dideuterated methylenedinitramine (D2-methylenedinitramine), respectively. Two controls were prepared in D2O both in the absence of sludge; the first contained methylenedinitramine, and the second contained RDX. Neither control produced any deuterated methylenedinitramine, thus excluding the occurrence of any abiotic D/H exchange between D2O and either methylenedinitramine or RDX. The results supported the occurrence of an initial enzymatic reaction on RDX, yet they did not provide compelling evidence on whether methylenedinitramine was an initial RDX enzymatic hydrolysis product or simply formed via the spontaneous hydrolysis of an anonymous initial RDX enzymatic product.  相似文献   

16.
The sorption/desorption and long-term fate of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) was examined using sterilized and nonsterilized soils. Two soils were used that differ mainly by the amount of total organic carbon (TOC): an agricultural topsoil (VT, 8.4% TOC) and a sandy soil (SSL, 0.33% TOC). The adsorption isotherms performed at room temperature were well-described by a linear model, which led to sorption distribution coefficients of 2.5 and 0.7 L kg(-1) for VT and SSL soils, respectively. The organic content of soil did not significantly affect HMX sorption. Over a period of 20 weeks, HMX degraded (60% disappearance) in static anaerobic nonsterile VT soil preparations. In separate experiments using UL-[14C]-HMX, 19% mineralization (liberated 14CO2) was obtained in 30 weeks. In addition, four nitroso derivatives of HMX were detected. Knowing the sorption/desorption behavior and the long-term fate of HMX in soil will help assess the effectiveness of natural attenuation for HMX removal.  相似文献   

17.
An important element of monitored natural attenuation is the detection in groundwater of distinctive products of pollutant degradation or transformation. In this study, three distinctive products of the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) were detected in contaminated groundwater from the Iowa Army Ammunition Plant; the products were MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine), DNX (hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine), and TNX (hexahydro-1,3,5-trinitroso-1,3,5-triazine). These compounds are powerful indicators of RDX transformation for several reasons: (a) they have unique chemical features that reveal their origin as RDX daughter products, (b) they have no known commercial, industrial, or natural sources, and (c) they are well documented as anaerobic RDX metabolites in laboratory studies. The products were analyzed by LC/MS/MS (liquid chromatography/mass spectrometry/mass spectrometry) with selected reaction monitoring and internal standard quantification using [ring-U-15N]RDX. Validation tests showed the novel LC/MS/MS method to be of favorable sensitivity (detection limits ca. 0.1 microg/L), accuracy, and precision. The products, which were detected in all groundwater samples with RDX concentrations of > ca. 1 microg/L (25 out of 55 samples analyzed), were present at concentrations ranging from near the detection limit to 430 microg/L. MNX was the typically the most abundant of the three nitroso-substituted products; concentrations of the products seldom exceeded 4 mol % of the RDX concentration, although they ranged as high as 26 mol % (TNX). Geographic and temporal distributions of RDX, MNX, DNX, and TNX were assessed. A degradation product resulting from RDX ring cleavage, methylenedinitramine, was not detected by LC/MS/MS in any sample (detection limit ca. 0.6-4 microg/L). This extensive field characterization of MNX, DNX, and TNX distributions in groundwater by a highly selective analytical method (LC/MS/MS) is significant because very little is known about the occurrence of intrinsic RDX transformation in contaminated aquifers.  相似文献   

18.
Organically complexed iron species can play a significant role in many subsurface redox processes, including reactions that contribute to the transformation and degradation of soil and aquatic contaminants. Experimental results demonstrate that complexation of Fe(II) by catechol- and thiol-containing organic ligands leads to formation of highly reactive species that reduce RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and related N-heterocyclic nitramine explosive compounds to formaldehyde and inorganic nitrogen byproducts. Under comparable conditions, relative reaction rates follow HMX < RDX < MNX < DNX < TNX. Observed rates of RDX reduction are heavily dependent on the identity of the Fe(II)-complexing ligands and the prevailing solution conditions (e.g., pH, Fe(II) and ligand concentrations). In general, reaction rates increase with increasing pH and organic ligand concentration when the concentration of Fe(II) is fixed. In solutions containing Fe(II) and tiron, a model catechol, observed pseudo-first-order rate constants (k(obs)) for RDX reduction are linearly correlated with the concentration of the 1:2 Fe(II)-tiron complex (FeL2(6-)), and kinetic trends are well described by -d[RDX]/dt= k(FeL2)6-[FeL2(6-)][RDX], where k(FeL2)6- = 7.31(+/-2.52) x 10(2) M(-1) s(-1). The reaction products and net stoichiometry (1 mol of RDX reduced for every 2 mol of Fe(II) oxidized) support a mechanism where RDX ring cleavage and decomposition is initiated by sequential 1-electron transfers from two Fe(II)-organic complexes.  相似文献   

19.
20.
Recently we demonstrated that Rhodococcus sp. strain DN22 degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (1) aerobically via initial denitration followed by ring cleavage. Using UL 14C-[RDX] and ring labeled 15N-[RDX] approximately 30% of the energetic chemical mineralized (one C atom) and 64% converted to a dead end product that was tentatively identified as 4-nitro-2,4-diaza-butanal (OHCHNCH2NHNO2). To have further insight into the role of initial denitration on RDX decomposition, we photolyzed the energetic chemical at 350 nm and pH 5.5 and monitored the reaction using a combination of analytical techniques. GC/ MS-PCI showed a product with a [M+H] at 176 Da matching a molecular formula of C3H5N5O4 that was tentatively identified as the initially denitrated RDX product pentahydro-3,5-dinitro-1,3,5-triazacyclohex-1-ene (II). LC/MS (ES-) showed that the removal of RDX was accompanied by the formation of two other key products, each showing the same [M-H] at 192 Da matching a molecular formula of C3H7N5O5. The two products were tentatively identified as the carbinol (III) of the enamine (II) and its ring cleavage product O2NNHCH2NNO2CH2NHCHO (IV). Interestingly, the removal of III and IV was accompanied by the formation and accumulation of OHCHNCH2NHNO2 that we detected with strain DN22. At the end of the experiment, which lasted 16 h, we detected the following products HCHO, HCOOH, NH2CHO, N2O, NO2-, and NO3-. Most were also detected during RDX incubation with strain DN22. Finally, we were unable to detect any of RDX nitroso products during both photolysis and incubation with the aerobic bacteria, emphasizing that initial denitration in both cases was responsible for ring cleavage and subsequent decomposition in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号