首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 843 毫秒
1.
采用固相反应烧结方法制备了Sm掺杂的[(Na0.5Bi0.5)0.93Ba0.07]1-xSmxTiO3(BNBST)无铅介电储能陶瓷, 系统研究了Sm掺杂含量对BNBST陶瓷的相结构、微观结构、铁电、介电、储能和交、直流电导的影响。研究结果表明: 制备的陶瓷样品具有单一的钙钛矿结构, Sm掺杂固溶于(Na0.5Bi0.5)0.93Ba0.07TiO3基材的晶格A位; 晶粒生长被Sm掺杂抑制, 平均晶粒尺寸在2 μm内, 且均匀致密; Sm掺杂显著降低了剩余极化和矫顽场, 表现出双电滞回线特性, 但饱和极化也略有降低; 储能密度和效率随Sm掺杂量增加先增大后减小, 在x=0.02和电场为70 kV/cm时获得最大储能密度0.70 J/cm3, 其效率为40%; BNBST陶瓷具有明显的弛豫铁电体特征, 其介电常数峰Tm随掺杂量增加而降低且平坦化; BNBST陶瓷的绝缘性有较强的温度依赖性, 300℃以下具有良好的绝缘性。  相似文献   

2.
采用固相反应法制备了Y掺杂 (Ba0.6Sr0.3Ca0.1)1-xYxTi0.999Mn0.001O3 (0≤x≤0.007)陶瓷, 重点研究了Y含量对BSCT基陶瓷的显微结构、介电性能和热释电性能的影响。结果表明: 随着Y含量的增加, BSCYxTM陶瓷的平均晶粒尺寸逐渐减小, 介电常数、介电损耗、居里温度和热释电系数均呈现先增加后减小的趋势。当Y掺杂量为0.7mol%时, BSCYxTM陶瓷的平均晶粒尺寸最小为3.1 μm, 且探测优值Fd较大, 最大值可达8.22×10-5 Pa-1/2(700 V/mm, 30℃), 高于采用溶胶-凝胶法制备的同组分陶瓷的探测优值5.91×10-5 Pa-1/2。  相似文献   

3.
采用传统的固相反应法制备致密的Bi1.4Sc0.1ZnNb1.5-xRuxO7陶瓷样品, 研究Sc3+, Ru4+共同替代对Bi2O3-ZnO-Nb2O5陶瓷的相结构、晶体化学特性和介电性能的影响。结果表明: 当掺杂量x≤0.055 mol时, 样品保持单一的立方焦绿石结构。当掺杂量x=0.055 mol时, X射线衍射峰强度变弱, 峰形变宽。随着掺杂量的增加(0≤x≤0.04 mol), 陶瓷样品的晶格常数a和A位离子与第7个氧O′平均键长R(A-O')逐渐减小, 结晶化学参数键价和AV(O')[A4]增大, AV(O)[A2B2]减小, 48f(O)偏移量ξ增加。室温下样品的介电常数随着掺杂量的增加而减小, 介电损耗逐渐增加, 介电松弛特征减弱。低温下样品呈现明显的弛豫现象, 峰值温度Tm随着掺杂量的增加向高温方向移动。利用修正的Curie-Weiss(C-W)公式对样品εr-T曲线进行最小二乘法拟合, 得出样品的弛豫度γ由R0样品的1.57减小到R40样品的1.33。  相似文献   

4.
采用传统固相法制备了CaxSr1-xBi2Nb2O9 (x=0、0.10、0.25、0.40)无铅压电陶瓷, 研究了Ca2+掺杂量对其微观结构、电学性能及其高温稳定性的影响。掺入Ca2+并未改变SrBi2Nb2O9陶瓷的晶体结构; 随着Ca2+掺杂量的增加, 陶瓷晶粒由片状向长条状转变; 陶瓷的矫顽场(Ec)下降, 剩余极化强度(Pr)先增大后减小; 陶瓷的居里温度由450℃升高到672℃。当x=0.10时, 陶瓷具有较好的综合性能: 2Pr=14.8 μC/cm2, d33=22 pC/N, Tc=488℃; 当退火温度达到400℃时, 压电常数d33仍达到20 pC/N, 说明该材料具有较好的温度稳定性, 可以在400℃的高温环境中应用。  相似文献   

5.
BaTiO3具有高介低损、廉价环保的优点,但其介电常数在相变温度附近发生非线性变化的特性限制了其在宽温稳定型电容器领域的应用。为改善BaTiO3的介温特性,本工作利用固相合成法制备BaTi1-xCexO3(x=0~0.20)陶瓷,在BaTiO3的B位(Ti位)引入Ce掺杂,通过实验方法研究不同Ce掺杂量对陶瓷相演变、缺陷状态、微观形貌与介电性能的影响规律,并结合第一性原理计算方法探究掺杂改性的作用机理。结果表明:在所有陶瓷样品中,Ce元素均以Ce4+形式完全进入B位。随着Ce掺杂量的增加,BaTi1-xCexO3陶瓷的室温结构由四方/赝立方共存结构转变为正交/四方结构,再转变为赝立方相结构。由于Ce4+与Ti4+的离子半径差异,Ce掺杂使得陶瓷的晶格常数上升,导致局部晶格畸变与铁电结构长程有序度的降低,引起能带结构、态密度与电...  相似文献   

6.
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。  相似文献   

7.
通过化学沉淀法引入烧结助剂Y3+、La3+和Mg2+, 采用真空烧结工艺制备了半透明Al2O3陶瓷, 并研究了烧结助剂对烧结材料的微观结构、相对密度和透光率的影响。结果表明: 引入的烧结助剂能均匀分散在合成的半透明Al2O3陶瓷中。烧结助剂的最佳引入量为Mg2+(0.15wt%)、Y3+(0.05wt%)和La3+(0.05wt%), 对应的试样在350~800 nm的波长范围内显示出的最高的总透光率(TFT)高于80%。此外, Y3+的掺杂可以促进晶粒生长, 降低孔隙率, 从而提高半透明Al2O3陶瓷的透光率。  相似文献   

8.
采用固相烧结方法制备了Bi、Co同时取代化学计量比钛酸铋钠基(Bi0.5+x/2Na0.5-x/2)0.94Ba0.06Ti1-xCoxO3无铅压电陶瓷, 研究了材料中A/B位缺陷对其电滞回线和电致应变的影响。结果表明陶瓷具有均一的赝立方结构, 随着掺杂量的增加, 材料铁电-弛豫相转变温度降低, 应变增加。同时材料在疲劳过程中伴随着弛豫相的增多, 在较低电场下产生较大的应变(0.458%), 逆压电常数d33*达到770 pm/V。介电温谱和电滞回线上反常变化与化学计量比陶瓷中产生的A/B位缺陷偶极子密切相关, 并表明这种缺陷偶极子是以氧空位为媒介形成的。  相似文献   

9.
采用溶胶-凝胶法制备Ca0.25(Li0.43Sm0.57)0.75TiO3(CLST)微波介质陶瓷纳米粉体, 研究了ZnO掺杂量和烧结温度对CLST+ xmol% ZnO陶瓷烧结性能和微波介电性能的影响。XRD分析结果表明: 随着ZnO掺杂量x的增加, 陶瓷的晶体结构从正交相变为伪立方相, 并在x≥1.5的样品中出现了杂相。CLST+ xmol% ZnO陶瓷的致密化烧结温度随x的增加而降低, x=1.0的样品的致密化烧结温度比x=0的降低了200 ℃。介电常数εr和频率品质因数Qfx增加和烧结温度的升高具有最优值, 频率温度系数则单调降低。x=1.0的样品在1100 ℃烧结时具有优异的综合性能: ρ = 4.85 g/cm3, εr =102.8, Qf = 5424 GHz, τf = -8.2×10-6/℃。表明ZnO掺杂的CLST陶瓷是一种很有发展潜力的微波介质陶瓷。  相似文献   

10.
本研究采用BiScO3组分对固相烧结工艺制备的(1-x)(Bi0.5Na0.5)0.935Ba0.065TiO3-xBiScO3(BNBT-xBS)无铅陶瓷进行改性, 考察了BiScO3掺杂含量对陶瓷的微观结构、储能、场致应变和介电等性能的影响。结果表明: 随着BiScO3掺杂含量的增加, BNBT-xBS陶瓷的相结构由三方相与四方相共存演变为伪立方相, 无杂相形成, 且平均晶粒尺寸略有增大; BiScO3组分的引入破坏了BNBT陶瓷铁电畴的长程有序, 表现出弱极化, 且伴随有铁电相到弛豫铁电相的相变过程。BiScO3组分提高了储能和应变性能, 在70 kV/cm电场下其最大储能密度为0.46 J/cm3, 电致应变达到0.25%。介电常数随着掺杂含量的增加逐渐降低, 其介电行为也表明陶瓷具有弛豫铁电体特征; BNBT-xBS陶瓷表现出负温度系数效应, 且在450℃以下具有较好的绝缘性。  相似文献   

11.
采用传统固相烧结工艺, 在1000℃成功制备了致密度较高、微观形貌较好的Li0.05+x(Na0.535K0.48)0.95NbO3 (LxNKN)压电陶瓷. 考察了Li补偿量对LxNKN陶瓷致密度、微观结构、相结构、居里温度及电学性能的影响. 结果发现: 添加过量Li不仅促进陶瓷的烧结, 而且降低陶瓷的烧结温度. XRD图谱分析和相应的晶格常数计算表明, 在x=0.010~0.015范围内出现了四方-正交两相共存的多形态相界(PPT). 由于PPT的出现, 在最佳补偿量x=0.015处, 陶瓷的压电常数d33、机电耦合系数kp、介电常数εr和剩余极化强度Pr分别达到各自的最大值282 pC/N、44%、942和27 μC/cm2. 与化学计量比的LNKN陶瓷相比, LxNKN陶瓷的居里温度随Li补偿量的增加变化很小, 这可能是由于Li主要是起助烧作用而进入主相晶格很少的缘故. 研究工作为低温制备高性能铌酸盐系压电陶瓷提供了一种新的思路.  相似文献   

12.
The effects of Y3+ doping at different concentration on the luminescnece properties of PbWO4 crystals have been investigated by means of Fourier transform infrared (FT-IR) spectrum, optical transmission, thermoluminescence (TL), X-ray excited luminescence (XEL), photoluminescence (PL) under excitation of UV light and light yield measurements. The series PbWO4:Y crystal samples were grown by modified Bridgman method and the concentration of Y3+ in the melt was in the range of 0–1.0 mol%. The slight blue-shift and evident red-shift of the absorption edge in PbWO4 crystal were observed at low and heavy doping concentration, respectively. TL peaks in the range of from room temperature to 250 °C disappeared after the doping with Y3+. With the increase of doping concentration, the luminescence intensity in the XEL and PL spectra was found to decrease accordingly, especially in the case of heavy doping. The measuring results demonstrate that Y3+ doping concentration below 100 ppm in the crystal seems to be the best for optimizing the optical and scintillation properties of the material. The mechanism of Y3+ doping concentration influence on luminescence was also discussed in this paper.  相似文献   

13.
采用传统固相反应法制备了Ba(Ti0.96Sn0.04)O3无铅压电陶瓷, 对其压电性能、介电性能、铁电性能和微观结构等进行了研究。研究发现, 原料以及制备工艺对Ba(Ti0.96Sn0.04)O3陶瓷的压电性质具有较大的影响。与BaTiO3陶瓷相比, Ba(Ti0.96Sn0.04)O3陶瓷的正交-四方相变温度TO-T得到了一定的提高, 并且TO-T附近的热滞只有1.8℃。陶瓷的微观形貌呈现出较为复杂的畴结构, 主要以90°平行带状畴为主, 偶尔有少量不同构型的180°畴。电滞回线呈现为理想的近似矩形饱和形状的曲线, 剩余极化强度Pr为18.9 μC/cm2, 矫顽场Ec为 2.5 kV/cm。此外, 非180°畴的翻转是引起陶瓷逆压电常数d33*的主要因素, 其值可达550 pm/V。  相似文献   

14.
为了在获得较高压电性能的同时又不大大降低陶瓷的居里温度(TC), 设计和制备了Bi0.45Nd0.05(Na0.92Li0.08)0.5ZrO3改性的K0.48Na0.52NbO3系无铅压电陶瓷((1-x)KNN-xBNNLZ), 研究了BNNLZ含量对KNN基无铅压电陶瓷相结构和电学性能的影响。研究结果表明, 所有陶瓷样品均具有较高的居里温度TC(>300℃)。随着BNNLZ含量的增加, 陶瓷的正交-四方相变温度(TO-T)不断向低温方向移动, 而三方-正交相变温度(TR-O)不断向高温方向移动, 最终在陶瓷中形成了三方-四方(R-T)共存相, R-T共存相处于0.05<x<0.07范围。BNNLZ的加入引起陶瓷相结构的演化改变导致压电常数(d33 )、介电常数(εr )、剩余极化强度 (Pr )和机电耦合系数(kp )都先增大后减小, 当x=0.06时陶瓷具有最佳压电性能: d33=313 pC/N, kp=42%, Pr=25.48 μC/cm2, εr=1353, tanδ=2.5%, TC=327℃。  相似文献   

15.
基于液相促进固相反应烧结机制, 设计MgO/SrO/La2O3多元复合添加(Zr0.8Sn0.2)TiO4(ZST)体系, 探究复合添加剂对ZST陶瓷的物相组成、微观结构、烧结特性以及高频介电性能等参数的影响。实验结果表明: 陶瓷的主晶相均为ZST相; 适量添加MgO/SrO/La2O3可以有效地降低ZST陶瓷的烧结温度, 获得较优的微波介电性能; 但MgO添加量的增多对材料的综合性能有小幅度的影响; SrO的添加量过大会造成晶粒的不完全生长、瓷体不致密和气孔的增多, 从而导致材料的密度、介电常数和Q×f值的下降; 此外, 添加剂对陶瓷的频率温度系数(τf)影响不大。在复合添加0.2wt%MgO、0.6wt%SrO、1.0wt%La2O3时, 1300℃保温5 h的ZST陶瓷综合性能优异: ρ=5.14 g/cm3, εr=40.11, Q×f=51000 GHz (f=5.61 GHz), τf=-2.85×10-6-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号