首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
将十溴二苯乙烷(DBDPE)、成碳剂(CTJ)、化学膨胀剂(IFR)复配阻燃氯丁橡胶,利用氧指数(LOI)和锥形量热仪(CONE)探讨了十溴二苯乙烷与CTJ、IFR复配阻燃氯丁橡胶的协同效应,通过扫描电镜研究表征样品的断面形貌。结果表明,当三者共用15份,且DBDPE∶CTJ∶IFR比例为7:2:6时,阻燃CR体系的无焰燃烧时间为7 s,同时LOI达到了4 0%,热释放速率只有纯C R的11.4%,生烟速率为纯C R的3 0.8%,表现出一定的协同作用;从样品燃烧后的断面扫描电镜照片看出,兼有了物理成炭和化学成炭的优点,提高了阻燃性能。  相似文献   

2.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

3.
通过垂直燃烧试验、极限氧指数(LOI)测定和锥形量热分析,对焦磷酸哌嗪(DPP)与三聚氰胺氰尿酸盐(MCA)复合而成的膨胀型阻燃剂(IFR)阻燃聚丙烯(PP)进行了研究。结果表明:当m(MCA):m(DPP)为1.0∶2.5,IFR质量分数为26%时,PP的LOI为34.2%,垂直燃烧试验可通过V-0级;与PP相比,阻燃PP的热释放速率(HRR)、总热释放量(THR)分别降低了91.34%,31.42%。该IFR对PP的阻燃机理与聚磷酸铵基IFR的类似,主要是通过凝聚相阻燃。  相似文献   

4.
采用三嗪成炭剂(CFA)和聚磷酸铵(APP)制备膨胀阻燃剂(IFR),将空心玻璃微珠(HGM)加入IFR进行协效阻燃,探讨HGM对PP/IFR/HGM的氧指数、垂直燃烧、热降解行为、炭层形貌的影响。结果表明:PP/IFR/HGM(5%)复合材料的LOI为32.6%,1.6 mm样条垂直燃烧通过V-0级。PP/IFR/HGM(5%)最大热失重温度为494.3℃,800℃残炭率为9.5%,与纯PP相比,热分解速率降低,热稳定性提高,残炭量增多。HGM的加入使复合材料的阻燃性能明显提高,PP/IFR/HGM(5%)热释放速率峰值为183 kW/m2,总热释放量为3 456.2 MJ/m2。空心玻璃微珠使PP/IFR/HGM(5%)复合材料的炭层更致密。  相似文献   

5.
研究硅胶(SG)作为协效剂与IFR协同阻燃LGF/PP复合材料的性能。通过极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪(CONE)、热重分析法(TG)、扫描电子显微镜(SEM)、力学性能等测试表征LGF/PP/IFR/SG阻燃复合体系的性能。结果表明:当硅胶用量为2%时,阻燃复合材料的LOI为29.4%,且燃烧等级达到V-0级;CONE测试结果表明LGF/PP/IFR/SG阻燃复合材料的第一热释放速率峰值降低,而第二热释放速率峰消失;LGF/PP/IFR/SG阻燃复合材料具有较好的热稳定性,且产生致密均匀的炭层;并研究硅胶用量对复合材料力学性能的影响。  相似文献   

6.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

7.
将可膨胀石墨(EG)、P-N型膨胀阻燃(剂IFR)与ABS树脂共混,制作复合阻燃材料。用氧指数(OI)、UL 94测试和锥形量热仪(CONE)探讨了EG与IFR复合阻燃ABS的协同效应。通过热失重分析(TG)研究了阻燃ABS体系的热失重行为。结果表明:EG与IFR协同阻燃ABS,OI达到29%,UL 94为V-0级,热释放速率大幅度降低,EG与IFR复合阻燃ABS具有一定的协同效应;在空气气氛下,EG与IFR可以相互促进成炭,且形成的炭层稳定在,850℃也不会分解。  相似文献   

8.
以海泡石(SP)作为协效剂,研究SP与膨胀型阻燃剂(IFR)协同阻燃LGFPP复合材料的性能。通过极限氧指数(LOI)、垂直燃烧(UL-94)、热重分析(TG)等表征LGFPP/IFR/SP复合材料的协同阻燃性能及协效机理。结果表明:随着SP协效剂用量增加,LGFPP/IFR/SP复合材料的LOI呈先增加后降低的趋势,当SP用量为1%时,复合材料的LOI为29.3%,燃烧等级达到V-0级;Ozawa法计算得到复合材料的活化能随着失重率的增大而增大;在LGFPP/IFR/SP阻燃协效体系中,海泡石主要为化学协效阻燃机理。  相似文献   

9.
利用锥形量热仪(CONE)和热失重分析(TG)研究了化学膨胀阻燃剂(IFR)、氢氧化铝/红磷(Al(OH)3/P)及二者复合阻燃SBR的阻燃性能及热失重行为。结果表明,阻燃剂用量为40份,聚磷酸铵(APP)与季戊四醇(PER)质量比为3∶1时,SBR/APP/PER的热释放速率及生烟速率均大幅度下降,阻燃效果较好;Al(OH)3与P质量比为26∶14时,可有效降低SBR/Al(OH)3/P的热释放速率,但生烟速率较大;将APP/PER∶Al(OH)3/P=1∶1复配,SBR/IFR/Al(OH)3/P的热释放速率和生烟速率没有进一步改善,协同效应不明显。热失重研究表明,空气气氛下,试样SBR/IFR/Al(OH)3/P在300~500℃时,Al(OH)3/P反应使得SBR分解速度下降;在500~800℃时,APP与PER形成炭层,有效地起到隔热隔氧的作用,从而抑制炭黑的分解;两者复合使用,使阻燃SBR分解速度降低,热稳定性提高。  相似文献   

10.
《塑料》2014,(6)
通过水热法合成锡酸锌(Zn2Sn O4),将所得Zn2Sn O4作为协效剂加入聚丙烯(PP)/聚磷酸铵(APP)/季戊四醇(PER)膨胀阻燃(IFR)体系中,测试其阻燃和力学性能;并利用热重、热分析-质谱及扫描电镜等方法探索其协效阻燃机理。结果表明:添加1%锡酸锌的PP/IFR体系LOI达30.2%,并且对力学性能影响较小;热分析表明加入锡酸锌使PP/IFR体系热降解过程中最大分解温度提高,最大失重速率降低,成炭量增加,炭层致密结实,部分离子流强度也有所降低,与IFR有很好的阻燃协同作用。  相似文献   

11.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

12.
研究了季戊四醇磷酸酯三聚氰胺盐微胶囊化的多聚磷酸铵(KDIFR)、三聚氰胺-甲醛树脂微胶囊化的多聚磷酸铵(MAPP)和多聚磷酸铵(APP) 3种膨胀型阻燃剂,及引入硼、铝元素对膨胀型阻燃环氧树脂(EP)阻燃性能的影响,采用极限氧指数法和水平燃烧法测试材料的燃烧性能。结果表明,3种阻燃剂中APP的阻燃效果最好,当APP/EP为0.3(质量比,下同)时,其极限氧指数为32.2 %,达到难燃级水平;在EP/APP中引入铝元素或硼元素可使阻燃效果提高,硼、铝共存时阻燃效果更加突出,加入APP总量0.8 %的硼酸铝可使EP/APP的自熄时间由48 s降为24 s;热分析结果表明,APP热分解吸热恰与EP的热降解产物燃烧放热相匹配,这是使EP/APP的阻燃性能提高的主要原因;在EP/APP中引入硼和铝元素可明显促进EP/APP成炭,起到协同阻燃作用。  相似文献   

13.
膨胀型阻燃体系阻燃LDPE性能的研究   总被引:2,自引:1,他引:1  
比较了Ⅰ型聚磷酸铵(n>30)和Ⅱ型聚磷酸铵(n>1000)的基本性质及其阻燃低密度聚乙烯复合材料的力学性能和阻燃性能,研究表明:聚磷酸铵(APP)提高了复合材料的氧指数LOI,延缓复合材料的分解,但会造成复合材料力学性能的下降,这一点不因APP种类而改变。然而,聚磷酸铵的表面改性会改善APP在LDPE中的分散,提高二者的相容性,有利于复合材料力学性能的提高。  相似文献   

14.
利用含磷三嗪环低聚物(PMPT)及其复合阻燃剂制备阻燃聚丙烯(PP),探讨了PMPT和多聚磷酸胺/季戊四醇(APP/PER)/PMPT的用量对阻燃PP极限氧指数、燃烧参数的影响,并用扫描电子显微镜观察了剩余炭层的微观形貌,推测了阻燃剂PMPT的阻燃机理.结果表明,随着阻燃剂PMPT用量的增加,阻燃PP的氧指数逐渐增大;APP,PER,PMPT三者有很好的协同阻燃作用;PMPT阻燃机理遵循凝聚相阻燃机理.  相似文献   

15.
陈先敏 《塑料工业》2014,42(9):109-112
研究了不同配比的红磷阻燃母料(RPM)与氢氧化镁(MH)协同阻燃高抗冲聚苯乙烯(HIPS)体系的阻燃性能和机械性能。并选取最佳红磷阻燃母料与氢氧化镁的配比,再分别与其他无卤阻燃剂如酚醛树脂、氧化锌、氰尿酸三聚氰胺盐、有机纳米蒙脱土复配来共同阻燃HIPS,并分别对其体系的机械性能和阻燃性能进行了研究。结果表明,在RPM/MH质量比为1,总质量分数为30%时,与7%的酚醛树脂或有机纳米蒙脱土复配,都可以使阻燃HIPS材料达到1.6 mm UL94的V-1级。  相似文献   

16.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

17.
18.
19.
氯溴代烷基磷酸酯阻燃剂的合成与阻燃性研究   总被引:1,自引:0,他引:1  
本文对新戊二醇、溴素、三氯氧磷和环氧乙烷等为原料合成了氯溴代烷基磷酸酯阻燃剂-3-溴-2,2-二甲基丙基-2-溴乙基-2-氯乙基磷酸酯(CBAP-912),探索了温度、时间、原料配比,催化剂用量等反应条件对产率的影响。用化学方法,FTIR、TG等方法对该合成产物的性能和结构进行了表征。并研究了该阻燃剂在不饱和聚酯树脂和聚氯乙烯中的阻燃性,结果表明其上有良好的阻燃性能。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号