首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superparamagnetic Fe3O4 nanoparticles were synthesized via a modified coprecipitation method, and were characterized with X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Zeta potential and FT-IR, respectively. The influences of different kinds of surfactants (sodium dodecyl benzene sulfonate, polyethyleneglycol, oleic acid and dextran), temperatures and pH values on the grain size and properties were also investigated. In this method, Fe3+ was used as the only Fe source and partially reduced to Fe2+ by the reducing agent with precise content. The following reaction between Fe3+, Fe2+ and hydroxide radical brought pure Fe3O4 nanoparticles. The tiny fresh nanoparticles were coated in situ with surfactant under the action of sonication. Comparing with uncoated sample, the mean grain size and saturation magnetization of coated Fe3O4 nanoparticles decrease from 18.4 nm to 5.9-9.0 nm, and from 63.89 emu g−1 to 52-58 emu g−1 respectively. When oleic was used as the surfactant, the mean grain size of Fe3O4 nanoparticles firstly decreases with the increase of reaction temperature, but when the temperature is exceed to 80 °C, the continuous increase of temperature resulted in larger nanoparticles. the grain size decreases gradually with the increasing of pH values, and it remains unchanged when the PH value is up to 11. The saturation magnetization of as-prepared Fe3O4 nanoparticles always decreases with the fall of grain size.  相似文献   

2.
An easy synthesis route of magnetite (Fe3O4) nanopowder is developed by using thermal decomposition of Fe-urea complex ([Fe(CON2H4)6](NO3)3). The formation of Fe3O4 is confirmed from X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. The morphological properties and magnetic properties of the Fe3O4 are characterized by transmission electron microscopy (TEM) and magnetic measurements, respectively. By an increase in reaction temperature from 200 to 300 °C, the average crystallite size of the Fe3O4 nanopowder increases from 37 to 50 nm. Room temperature magnetization hysteresis curves show that the Fe3O4 nanopowder possesses ferrimagnetic characteristics. The saturation magnetization of the Fe3O4 nanopowder increases from 70.7 to 89.1 emu/g when the reaction temperature increases from 200 to 300 °C.  相似文献   

3.
Fe3O4 micro-spheres with nanoparticles close-packed architectures were synthesized via a simple chemical method using (NH4)2Fe(SO4)2·6H2O, hexamethylenetetramine, and NaF as reaction materials. This chemical synthesis took place in a vitreous jar under low temperature (90 °C) and atmospheric pressure. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 micro-spheres as anode electrode of lithium ion batteries were studied by conventional charge/discharge tests, which exhibit steady charge/discharge platforms at different current densities. The as-prepared Fe3O4 electrode shows high initial discharge capacity of 1166 and 1082 mAh g−1 at current density of 0.05 and 0.1 mA cm−2, respectively.  相似文献   

4.
The micro-sized sphere Fe2O3 particles doped with graphene nanosheets were prepared by a facile hydrothermal method. The obtained Fe2O3/graphene composite as the anode material for lithium ion batteries showed a high discharge capacity of 660 mAh g−1 during up to 100 cycles at the current density of 160 mA g−1 and good rate capability. The excellent electrochemical performance of the composite can be attributed to that graphene served as dispersing medium to prevent Fe2O3 microparticles from agglomeration and provide an excellent electronic conduction pathway.  相似文献   

5.
Fe3O4/polypyrrole (PPy) core/shell nanocomposite, with Fe3O4 nanoparticle as core and PPy as shell, could be facilely synthesized via in situ chemical oxidative polymerization of pyrrole monomers on the surface of Fe3O4 nanoparticles. The results indicate that core/shell nanocomposite consists of Fe3O4 core with the mean diameter of 100 nm and adjacent PPy shell with a thickness of about 70 nm. The as-prepared Fe3O4/PPy core/shell nanocomposite exhibits a saturated magnetization of 20.1 emu/g and coercivity value of 368.3 Oe, respectively. The electromagnetic characteristics of Fe3O4/PPy core/shell nanocomposite were also investigated with a vector network analyzer in the 2-18 GHz range. The absorbing peak position moves to lower frequency with increasing the thicknesses of samples. The value of the minimum reflection loss is −22.4 dB at 12.9 GHz for Fe3O4/PPy core/shell nanocomposite with a thickness of 2.3 mm, and a broad peak with a bandwidth lower than −10 dB is about 5 GHz. Such strong absorption is attributed to better electromagnetic matching due to the existence of PPy and the special core/shell structure.  相似文献   

6.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

7.
The hydrophilic phenol formaldehyde resin coated Fe3O4 nanocrystals are prepared via a novel one-step solvothermal approach at 160 °C for 6-9 h without inert gas protection. Water-glycol mixture is used as solvent in common air surrounding. FeSO4·7H2O, hexamethylenetetramine and phenol are used as resource materials without any others additives or surfactants. The transmission electronic microscope images show the samples are composed of sphere-like particles with sizes about 10-20 nm. The X-ray diffraction data indicate cube-phase Fe3O4 nanocrystals are obtained at given conditions. Fourier transform infrared spectra further reveal the samples are consisted of Fe3O4 and PFR. Without modified pH and added surfactants, the solubility of the obtained sample is over 1% in water, which is far more than its solubility in toluene. Room-temperature hysteresis loop indicate that the as-obtained nano-crystals possess soft magnetic properties with high saturated mass magnetization (50.6 emu/g) and negligible coercivity.  相似文献   

8.
Well-crystallized magnetite (Fe3O4) thin films were successfully prepared by a simple hydrothermal process using hydrazine hydrate as the mineralizer. X-ray diffraction and scanning electron microscopy (SEM) and transmission electron microscopy were employed to characterize the products. SEM images show that the uniform Fe3O4 film (∼ 3 μm in thickness) is firmly grown on a nickel substrate. The magnetic property of the Fe3O4 particles scraped from the film was measured by Physical Property Measurement System (PPMS) at room temperature, and the magnetization curve reveals a soft ferromagnetic behavior with high saturation magnetization of 85 emu/g. Furthermore, the chemical and growth mechanisms for the hydrothermal formation of the Fe3O4 film are discussed.  相似文献   

9.
MnCO3 nanorods with diameters of 50-150 nm and lengths of about 1-2 μm have been prepared for the first time by a facile hydrothermal method. Mn2O3 and Mn3O4 nanorods were obtained via the heat-treatment of the MnCO3 nanorods in air and nitrogen atmosphere, respectively. The morphology and structure of the as-synthesized MnCO3, Mn2O3 and Mn3O4 nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. It was found that the MnCO3 nanorods are single-crystalline, and their morphology and single-crystalline characteristic can be sustained after thermal transformation into Mn2O3 and Mn3O4. The corresponding growth directions for MnCO3, Mn2O3 and Mn3O4 nanorods were [2 1 4], [1 0 0] and [1 1 2], respectively. When applied as anode materials for lithium ion batteries, the Mn2O3 and Mn3O4 nanorods exhibited a reversible lithium storage capacity of 998 and 1050 mAh/g, respectively, in the first cycles.  相似文献   

10.
Fine-grained Pb(Zr0.53Ti0.47)O3-(Ni0.5Zn0.5)Fe2O4 (PZT-NZFO) magnetoelectric (ME) composite ceramics were fabricated by a modified hybrid process at a low sintering temperature of 900 °C. Well-controlled crystallized grain size and homogeneous microstructure with a good mixture of two phases were observed in the ceramics. The ceramics show coexistence of ferrimagnetic and ferroelectric phases with well-formed ferromagnetic and ferroelectric hysteresis loops at room temperature. A significant ME effect was observed with a ME coefficient of 0.537 V cm−1 Oe−1 in the vicinity of electromechanical resonance. In addition, high capacitance can be obtained at low frequency, and magnetic properties in the ceramics can be tailored by the grain size of the ferromagnetic particles in a simple and flexible way.  相似文献   

11.
Mesoporous magnetite (Fe3O4) was successfully synthesized on a large scale by direct pyrolysis of ferric nitrate-EG (EG = ethylene glycol) gel in a one-end closed horizontal tube furnace in the air without using any template, additions, and carrier gas. The as-synthesized mesoporous Fe3O4 were characterized by powder X-ray diffraction (XRD), infrared spectra (IR), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), Brunauer-Emmett-Teller (BET), Barrett-Joyner-Halenda (BJH), and thermal gravimetric analysis (TGA). Results from TEM showed that the as-obtained Fe3O4 has mesoporous structure formed by the loose agglomeration of nanoparticles with diameter of about 6 nm, which was also confirmed by small-angle XRD and nitrogen adsorption analysis. Furthermore, vibrating sample magnetometer (VSM) measurements indicated that the saturated magnetization of the as-obtained mesoporous Fe3O4 was ferromagnetic with the saturation magnetization (Ms) and coercivity (Hc) of 46 emu/g and 136 Oe, respectively. In addition, a possible growth mechanism of mesoporous Fe3O4 was also discussed.  相似文献   

12.
A facile direct precipitation method has been developed for the synthesis of bifunctional magnetic-luminescent nanocomposites with Fe3O4 nanoparticles as the core and YVO4:Eu3+ as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bifunctional nanocomposites had a core-shell structure and a spherical morphology. The average size was ∼150 nm, and the thickness of the shell was ∼15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and a tetragonal phase of YVO4 shell were obtained. Fourier transform infrared (FT-IR) spectra confirmed that the YVO4:Eu3+ had been successfully deposited on the surface of Fe3O4 nanoparticles. Photoluminescence (PL) spectra indicated that the nanocomposites displayed a strong red characteristic emission of Eu3+. Magnetic measurements showed that the obtained bifunctional nanocomposites exhibited superparamagnetic behavior at room temperature. Therefore, the bifunctional nanocomposites are expected to develop many potential applications in biomedical fields.  相似文献   

13.
Li Fang  Tingyang Dai  Yun Lu   《Synthetic Metals》2009,159(19-20):2101-2107
The preparation of free-standing electromagnetic composite films based on conductive polypyrrole (PPy) hydro-sponge and the Fe3O4 ferrofluid have been successfully accomplished via self-assembly in the presence of β-cyclodextrin sulfate and under static condition. Transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray diffraction (XRD) are used to study the morphology of the PPy-Fe3O4 composite. Structural characterizations by Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) have proved the interactions between Fe3O4 and PPy chains. As-prepared films possess high electrical conductivity, remarkable magnetic response as well as appropriate flexility. Both the conductivity and magnetization of the composite, the latter in particular, depend strongly on the Fe3O4 content and thus can be optimized by adjusting the relative content of Fe3O4 in the composite. The combination of both magnetic and conducting activities of the resulting composite makes it be a potential candidate as functional material in electromagnetic devices, such as magnetic-controlled switches.  相似文献   

14.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

15.
dl-Thioctic acid (DLTA) coated magnetite (Fe3O4) NP's have been prepared by the co-precipitation of iron oxide in the presence of DLTA. The product identified as magnetite, which has an average crystallite size of 7 ± 2 nm as estimated from X-ray line profile fitting. Particle size was estimated as 11 ± 1 nm from TEM micrographs. FT-IR analysis showed that the binding of DLTA on the surface of iron oxide is through carboxyl group is bidentate. VSM analysis explained the super-paramagnetic nature of the nanocomposite. TG analysis showed that the 80% of the nanocomposite was DLTA and 10% was Fe3O4, respectively. The conductivity measurements displayed the magnetic transition at ∼60 °C for DLTA-Fe3O4 NPs. Analysis of the conductivities reveals the fact that the a.c. conductivity shows a frequency-dependent behavior while d.c. electrical conductivity is strongly temperature dependent and is classified into two regions over a limited temperature range of up to 120 °C. Toxicity was tested measured by LDH assay.  相似文献   

16.
The magnetic nanocomposites of (1 − x)Ni0.5Zn0.5Fe2O4/xSiO2 (x = 0-0.2) were synthesized by the citrate-gel process and their absorption behavior of bovine serum albumin (BSA) was investigated by UV spectroscopy at room temperature. The gel precursor and resultant nanocomposites were characterized by FTIR, XRD, TEM and BET techniques. The results show that the single ferrite phase of Ni0.5Zn0.5Fe2O4 is formed at 400 °C, with high saturation magnetization and small coercivity. A porous, amorphous silica layer is located at the ferrite nanograin boundaries, with the silica content increasing from 0 to 0.20, the average grain size of Ni0.5Zn0.5Fe2O4 calcined at 400 °C reduced from about 18-8 nm. Consequently, the specific surface area of the nanocomposites ascends clearly with the increase of silica content, which is largely contributed by the increase in the thickness of the porous silica layer. The Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites demonstrate a better adsorption capability than the bare Ni0.5Zn0.5Fe2O4 nanoparticles for BSA. With the increase of the silica content from 0 to 0.05 and the specific surface area from about 49-57 m2/g, the BSA adsorption capability of the Ni0.5Zn0.5Fe2O4/SiO2 nanocomposites calcined at 400 °C improve dramatically from 22 to 49 mg/g. However, with a further increase of the silica content from 0.05 to 0.2, the specific surface area increase from about 57-120 m2/g, the BSA adsorption for the nanocomposites remains around 49 mg/g, owing to the pores in the porous silica layer which are too small to let the BSA protein molecules in.  相似文献   

17.
The nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni0.8Zn0.2Fe2O4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm−1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5°.The electrochemical supercapacitor study of Ni0.8Zn0.2Fe2O4 thin films has been carried out in 6 M KOH electrolyte.The values of interfacial and specific capacitances obtained were 0.0285 F cm−2 and 19 F g−1, respectively.  相似文献   

18.
The heats of drop-solution in 3Na2O + 4MoO3 melt at 973 K and 1073 K for calcium and strontium carbonates, Bi2O3, Nb2O5 and several stoichiometric mixed oxides in CaO-Nb2O5, SrO-Nb2O5 and Bi2O3-Nb2O5 systems were measured using a Setaram Multi HTC-96 calorimeter. The values of enthalpy of formation from constituent binary oxides at 298 K, ΔoxH, were derived for the mixed oxides under investigation: ΔoxH(CaNb2O6) = −132.0 ± 23.8 kJ mol−1, ΔoxH(Ca2Nb2O7) = −208.0 ± 31.9 kJ mol−1, ΔoxH(SrNb2O6) = −167.9 ± 19.1 kJ mol−1, ΔoxH(Sr2Nb2O7) = −289.2 ± 37.5 kJ mol−1 and ΔoxH(BiNbO4) = −41.9 ± 11.1 kJ mol−1. Additionally, the values ΔoxH for other mixed oxides with different stoichiometries were estimated on the basis of these experimental results.  相似文献   

19.
A novel magnetic nanocomposite of multiwalled carbon nanotubes (MWCNTs) decorated with Co1−xZnxFe2O4 nanocrystals was synthesized successfully by an effective solvothermal method. The as-prepared MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposite was used for the functionalization of P/H hydrogels as a prototype of device to show the potential application of the nanocomposites. The nanocomposites were characterized by X-ray diffraction analysis, transmission electron microscopy and vibrating sample magnetometer. The results show that the saturation magnetization of the MWCNTs/Co1−xZnxFe2O4 magnetic nanocomposites increases with x when the Zn2+ content is less than 0.5, but decreases rapidly when the Zn2+ content is more than 0.5. The saturation magnetization as a function of Zn2+ substitution reaches a maximum value of 57.5 emu g−1 for x = 0.5. The probable synthesis mechanism of these nanocomposites was described based on the experimental results.  相似文献   

20.
Polypropiolate sodium (PPNa)-Fe3O4 nanocomposites were successfully synthesized by the precipitation of Fe3O4 in the presence of sodium polypropiolate and followed by reflux route. Structural, morphological, electrical and magnetic properties evaluation of the nanocomposite were performed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), vibrating scanning magnetometry (VSM) and conductivity measurements. Crystalline phase was identified as magnetite with an average crystallite size of 7 ± 3 nm as estimated from X-ray line profile fitting. Particle size estimated from TEM, by log-normal fitting, is ∼9 ± 1 nm. FT-IR analysis shows that the binding of PPNa on the surface of iron oxide is through bidentate linkage of carboxyl group. TGA analysis showed the presence of 20% PPNa around 80% magnetic core (Fe3O4)…PPNa-Fe3O4 nanocomposite show superparamagnetic characteristics at room temperature. It is found that the a.c. conductivity of the nanocomposites obeys the well-known power law of frequency in which it also depends on temperature. Additionally, its d.c. conductivity showed that two operating regions of the activation energy. Both real and imaginary parts of either permittivity exhibit almost the same attitudes which are the indication of the same ability in the stored energy, and dissipation of energy within the PPNa and PPNa-Fe3O4 nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号