首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
We study time-scale separation and robust controller design for a class of singularly perturbed nonlinear systems under perfect state measurements. The system dynamics are taken to be jointly linear in the fast state variables, control and disturbance inputs, but nonlinear in the slow state variables. Since global timescale separation may not always be possible for nonlinear singularly perturbed systems, we restrict our attention here to some closed subset of the state space, on which a timescale separation holds for sufficiently small values of the singular perturbation parameter. We construct a slow controller and a composite controller based on the solutions of particular slow and fast games obtained using time-scale separation. For the class of systems for which the slow controller can be selected to be robust with respect to small regular structural perturbations on the slow subsystem, we show under some growth conditions that the composite controller can achieve any desired level of performance that is larger than the maximum of the performance levels for the slow and fast subsystems,. A slow controller, however, is not generally as robust as the composite controller; but, still under some conditions which are delineated in the paper, the fast dynamics can be totally ignored. The paper also presents a numerical example to illustrate the theoretical results.  相似文献   

2.
In this paper, the problem of robust stability and robust disturbance attenuation is investigated for a class of singularly perturbed linear systems with norm-bounded parameter uncertainties in both state and output equations. Based on the slow and fast subsystems, a composite linear controller is designed such that both robust stability and a prescribed H infinity performance for the full-order system are achieved, irrespective of the uncertainties. Our results show that the above problem can be converted to an H infinity control problem for a related singularly perturbed linear system without parameter uncertainty. Thus, the existing results on H infinity control of singularly perturbed systems can be applied to obtain solutions to the problem of robust H infinity control for the uncertain systems, which is independent of the singular perturbation epsilon when epsilon is sufficiently small. An example is given to show the potential of the proposed technique.  相似文献   

3.
The D-stability problem of discrete time-delay singularly perturbed systems is examined. A two-stage method is first developed to analyse the stability relationship between a discrete time-delay singularly perturbed system and its corresponding slow and fast subsystems. Finally, the upper bound of a singular perturbation parameter is derived such that D-stability of the slow and fast subsystems can imply that of the original system, provided that the singular perturbation parameter is within this bound. This fact enables us to investigate the D-stability of the original system by establishing that of its corresponding slow and fast subsystems.  相似文献   

4.
Recent development of contraction theory-based analysis has opened the door for inspecting differential behaviour of singularly perturbed systems. In this paper, a contraction theory-based framework is proposed for stabilisation of singularly perturbed systems. The primary objective is to design a feedback controller to achieve bounded tracking error for both standard and non-standard singularly perturbed systems. This framework provides relaxation over traditional quadratic Lyapunov-based method as there is no need to satisfy interconnection conditions during controller design algorithm. Moreover, the stability bound does not depend on smallness of singularly perturbed parameter and robust to additive bounded uncertainties. Combined with high gain scaling, the proposed technique is shown to assure contraction of approximate feedback linearisable systems. These findings extend the class of nonlinear systems which can be made contracting.  相似文献   

5.
Recently, there are several studies on singularly perturbed systems with time delay and uncertainties. However, the existing results show only the limited results on either time delay or uncertainties. For time delay, small time delay or time delay only on the slow state are considered while, for uncertainties, the uncertain linear singularly perturbed system or the uncertain nonlinear singularly perturbed system with the conservative condition on uncertainties are considered. In this paper, the exponential stability of singularly perturbed systems with both time delay and uncertainties is investigated in the general form.  相似文献   

6.
This paper presents the composite fuzzy control to stabilize the nonlinear singularly perturbed (NSP) systems with guaranteed Hinfin control performance. We use the Takagi-Sugeno (T-S) fuzzy model to construct the singularly perturbed fuzzy (SPF) systems. The corresponding fuzzy slow and fast subsystems of the original SPF system are also obtained. At first, a set of common positive-define matrices and the controller gains are determined by the Lyapunov stability theorem and linear matrix inequality (LMI) approach. Then, a sufficient condition is derived for the robust stabilization of NSP systems. The composite fuzzy control will stabilize the original NSP systems for all epsivisin(0,epsiv*) and the allowable perturbation bound epsiv* can be determined via some algebra inequalities. A practice example is adopted to demonstrate the feasibility and effectiveness of the proposed control scheme  相似文献   

7.
The integral manifold approach captures from a geometric point of view the intrinsic two-time-scale behavior of singularly perturbed systems. An important class of nonlinear singularly perturbed systems considered in this note are fast actuator-type systems. For a class of fast actuator-type systems, which includes many physical systems, an explicit corrected composite control, the sum of a slow control and a fast control, is derived. This corrected control will steer the system exactly to a required design manifold.  相似文献   

8.
This paper considers the problem of robust control for a class of uncertain state‐delayed singularly perturbed systems with norm‐bounded nonlinear uncertainties. The system under consideration involves state time‐delay and norm‐bounded nonlinear uncertainties in the slow state variable. It is shown that the state feedback gain matrices can be determined to guarantee the stability of the closed‐loop system for all ∞ ∞ (0, ∞00) and independently of the time‐delay. Based on this key result and some standard Riccati inequality approaches for robust control of singularly perturbed systems, a constructive design procedure is developed. We present an illustrative example to demonstrate the applicability of the proposed design approach.  相似文献   

9.
Asymptotic stability of nonlinear multiparameter singularly perturbed systems is analyzed. Sufficient conditions for existence of a Lyapunov function and uniform asymptotic stability are derived. The new feature of these conditions over earlier results is that there is no restriction on the relative magnitudes of the small singular perturbation parameters. Moreover, the class of systems under consideration can be nonlinear in both the slow and fast variables, while earlier results were limited to systems linear in the fast variables.  相似文献   

10.
This paper considers the problem of designing an H infinity fuzzy controller with pole placement constraints for a class of nonlinear singularly perturbed systems. Based on a linear matrix inequality (LMI) approach, we develop an H infinity fuzzy controller that guarantees 1) the L2-gain of the mapping from the exogenous input noise to the regulated output to be less than some prescribed value, and 2) the closed-loop poles of each local system to be within a pre-specified LMI stability region. In order to alleviate the ill-conditioned LMIs resulting from the interaction of slow and fast dynamic modes, solutions to the problem are given in terms of linear matrix inequalities which are independent of the singular perturbation, epsilon. The proposed approach does not involve the separation of states into slow and fast ones and it can be applied not only to standard, but also to nonstandard singularly perturbed non-linear systems. A numerical example is provided to illustrate the design developed in this paper.  相似文献   

11.
We construct asymptotically optimal controls for singularly perturbed nonlinear systems, where both, the slow and the fast motions are controlled. For this purpose we give necessary optimality conditions for an averaged system for the slow motion.  相似文献   

12.
给出小增益增长条件使得在此条件下快慢子系统的渐近稳定性能够保证其原奇摄动系统的相应稳定性,并给出估计摄动参数的稳定界的解析表示及其应用例子.  相似文献   

13.
In this paper, the model-based networked control is addressed for a class of singularly perturbed control systems with nonlinear uncertainties. An approximate linear slow and fast control system of the plant, which can be obtained by omitting the nonlinear uncertainties, are used as a model to estimate the state behavior of the plant between transmission times. The stability of model-based networked control systems is investigated under the assumption that the controller/actuator is updated with the sensor information at constant time intervals. It is shown that there exists the allowable upper bound of the singular perturbation parameter such that the model-based networked control system is globally exponentially stable.  相似文献   

14.
蔡晨晓  邹云 《自动化学报》2007,33(5):511-517
讨论了关于离散奇异摄动系统的摄动稳定性解析条件, 给出了离散奇异摄动系统两种模型下的摄动稳定性充要条件. 通过分析状态矩阵的结构特性, 得出了系统稳定所需要的状态矩阵形式和限制条件. 同时, 通过广义系统途径也得到了 2-D 离散奇异摄动 Roessor 模型稳定的充分条件.  相似文献   

15.
This paper deals with the problem of control of singularly perturbed linear continuous-time systems. The authors' attention is focused on the design of a composite linear controller based on the slow and fast problems such that both stability and a prescribed H performance for the full-order system are achieved. The asymptotic behavior of the composite controller is studied, which is independent of the singular perturbation ϵ when ϵ is sufficiently small. Furthermore, the problem of robust control for the above system with parameter uncertainty is also investigated  相似文献   

16.
This paper studies the fault tolerant control, adaptive approach, for linear time-invariant two-time-scale and three-time-scale singularly perturbed systems in presence of actuator faults and external disturbances. First, the full order system will be controlled using ε-dependent control law. The corresponding Lyapunov equation is ill-conditioned due to the presence of slow and fast phenomena. Secondly, a time-scale decomposition of the Lyapunov equation is carried out using singular perturbation method to avoid the numerical stiffness. A composite control law based on local controllers of the slow and fast subsystems is also used to make the control law ε-independent. The designed fault tolerant control guarantees the robust stability of the global closed-loop singularly perturbed system despite loss of effectiveness of actuators. The stability is proved based on the Lyapunov stability theory in the case where the singular perturbation parameter is sufficiently small. A numerical example is provided to illustrate the proposed method.  相似文献   

17.
A class of linear shift-invariant discrete-time singularly perturbed systems with inaccessible states is considered. A design technique is formulated by which the stabilizing controller can be formed through the controllers of the slow and fast subsystems. Sufficient conditions for stability of the closed-loop system under this composite controller are given.  相似文献   

18.
We focus on the development of a Lyapunov-based economic model predictive control (LEMPC) method for nonlinear singularly perturbed systems in standard form arising naturally in the modeling of two-time-scale chemical processes. A composite control structure is proposed in which, a “fast” Lyapunov-based model predictive controller (LMPC) using a quadratic cost function which penalizes the deviation of the fast states from their equilibrium slow manifold and the corresponding manipulated inputs, is used to stabilize the fast dynamics while a two-mode “slow” LEMPC design is used on the slow subsystem that addresses economic considerations as well as desired closed-loop stability properties by utilizing an economic (typically non-quadratic) cost function in its formulation and possibly dictating a time-varying process operation. Through a multirate measurement sampling scheme, fast sampling of the fast state variables is used in the fast LMPC while slow-sampling of the slow state variables is used in the slow LEMPC. Appropriate stabilizability assumptions are made and suitable constraints are imposed on the proposed control scheme to guarantee the closed-loop stability and singular perturbation theory is used to analyze the closed-loop system. The proposed control method is demonstrated through a nonlinear chemical process example.  相似文献   

19.
In this paper, the problem of robust sampled-data H control of linear uncertain singularly perturbed systems is investigated. The parametric uncertainties are assumed to be time-varying and norm-bounded. Two types of controller design are considered: (1) with a fast sampling in the fast state and a slow one in the slow state, and (2) with a fast sampling in both states. For each type, a time-dependent Lyapunov functional associated with the sampling pattern is introduced to analyse the exponential stability and L2-gain performance of the closed-loop system. Linear matrix inequalities based solutions of the robust sampled-data H control problem are derived. The new results are proved theoretically to be less conservative than the existing results. An illustrative example is given which substantiates the usefulness of the proposed method.  相似文献   

20.
Balanced realizations of linear time-invariant singularly perturbed systems are studied. The reduced model of a singularly perturbed system that is obtained, based on the balanced realization, is compared to that obtained by time-scale considerations. An approximate balancing transformation for singularly perturbed systems is constructed based on balancing transformations of the approximating slow and fast subsystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号