首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a computational method for integrated shape and topology optimization of shell structures. Most research in the last decades considered both optimization techniques separately, seeking an initial optimal topology and refining the shape of the solution later. The method implemented in this work uses a combined approach, were the shape of the shell structure and material distribution are optimized simultaneously. This formulation involves a variable ground structure for topology optimization, since the shape of the shell mid-plane is modified in the course of the process. It was considered a simple type of design problem, where the optimization goal is to minimize the compliance with respect to the variables that control the shape, material fraction and orientation, subjected to a constraint on the total volume of material. The topology design problem has been formulated introducing a second rank layered microestructure, where material properties are computed by a “smear-out” procedure. The method has been implemented into a general optimization software called ODESSY, developed at the Institute of Mechanical Engineering in Aalborg. The computational model was tested in several numerical applications to illustrate and validate the approach.  相似文献   

2.
In this research, Method of Moving Asymptotes (MMA) is utilized for simultaneous shape and topology optimization of shell structures. It is shown that this approach is well matched with the large number of topology and shape design variables. The currently practiced technology for optimization is to find the topology first and then to refine the shape of structure. In this paper, the design parameters of shape and topology are optimized simultaneously in one go. In order to model and control the shape of free form shells, the NURBS (Non Uniform Rational B-Spline) technology is used. The optimization problem is considered as the minimization of mean compliance with the total material volume as active constraint and taking the shape and topology parameters as design variables. The material model employed for topology optimization is assumed to be the Solid Isotropic Material with Penalization (SIMP). Since the MMA optimization method requires derivatives of the objective function and the volume constraint with respect to the design variables, a sensitivity analysis is performed. Also, for alleviation of the instabilities such as mesh dependency and checkerboarding the convolution noise cleaning technique is employed. Finally, few examples taken from literature are presented to demonstrate the performance of the method and to study the effect of the proposed concurrent approach on the optimal design in comparison to the sequential topology and shape optimization methods.  相似文献   

3.
A robust shape and topology optimization (RSTO) approach with consideration of random field uncertainty in loading and material properties is developed in this work. The proposed approach integrates the state-of-the-art level set methods for shape and topology optimization and the latest research development in design under uncertainty. To characterize the high-dimensional random-field uncertainty with a reduced set of random variables, the Karhunen–Loeve expansion is employed. The univariate dimension-reduction (UDR) method combined with Gauss-type quadrature sampling is then employed for calculating statistical moments of the design response. The combination of the above techniques greatly reduces the computational cost in evaluating the statistical moments and enables a semi-analytical approach that evaluates the shape sensitivity of the statistical moments using shape sensitivity at each quadrature node. The applications of our approach to structure and compliant mechanism designs show that the proposed RSTO method can lead to designs with completely different topologies and superior robustness.  相似文献   

4.
We present a method for the shape and topology optimization of truss-like structure. First, an initial design of a truss-like structure is constructed by a mesh generator of the finite element method because a truss-like structure can be described by a finite element mesh. Then, the shape and topology of the initial structure is optimized. In order to ensure a truss-like structure can be easily manufactured via intended techniques, we assume the beams have the same size of cross-section, and a method based on the concept of the SIMP method is used for the topology optimization. In addition, in order to prevent intersection of beams and zero-length beams, a geometric constraint based on the signed area of triangle is introduced to the shape optimization. The optimization method is verified by several 2D examples. Influence on compliance of the representative length of beams is investigated.  相似文献   

5.
This paper presents a numerical shape optimization method for the optimum free-form design of shell structures. It is assumed that the shell is varied in the out-of-plane direction to the surface to determine the optimal free-form. A compliance minimization problem subject to a volume constraint is treated here as an example of free-form design problem of shell structures. This problem is formulated as a distributed-parameter, or non-parametric, shape optimization problem. The shape gradient function and the optimality conditions are theoretically derived using the material derivative formulae, the Lagrange multiplier method and the adjoint variable method. The negative shape gradient function is applied to the shell surface as a fictitious distributed traction force to vary the shell. Mathematically, this method is a gradient method with a Laplacian smoother in the Hilbert space. Therefore, this shape variation makes it possible both to reduce the objective functional and to maintain the mesh regularity simultaneously. With this method, the optimal smooth curvature distribution of a shell structure can be determined without shape parameterization. The calculated results show the effectiveness of the proposed method for the optimum free-form design of shell structures.  相似文献   

6.
7.
Numerical instabilities cause the well-known problem of checkerboarding during topology optimization: elements that possess material are periodically neighbored to elements that are material-free. Furthermore, such numerical solutions depend on the finite element mesh and no reasonable processing techniques exist for manufacture. Thus, integral- or gradient-based regularization techniques are usually applied during topology optimization. In this paper, a novel approach to regularization is derived for a recently published variational approach to topology optimization that is based on material growth. The presented approach shares some similarities with the discontinuous Galerkin method and completely removes consideration of additional nodal quantities or complex integration schemes. The derivation and numerical treatment of the resulting phase field equation as well as exemplary numerical results are presented.  相似文献   

8.
Shape feature control in structural topology optimization   总被引:1,自引:0,他引:1  
A variational approach to shape feature control in topology optimization is presented in this paper. The method is based on a new class of surface energies known as higher-order energies as opposed to the conventional energies for problem regularization, which are linear. In employing a quadratic energy functional in the objective of the topology optimization, non-trivial interactions between different points on the structural boundary are introduced, thus favoring a family of shapes with strip-like (or beam) features. In addition, the quadratic energy functional can be seamlessly integrated into the level set framework that represents the geometry of the structure implicitly. The shape gradient of the quadratic energy functional is fully derived in the paper, and it is incorporated in the level set approach for topology optimization. The approach is demonstrated with benchmark examples of structure optimization and compliant mechanism design. The results presented show that this method is capable of generating strip-like (or beam) designs with specified feature width, which have highly desirable characteristics and practical benefits and uniquely distinguish the proposed method.  相似文献   

9.
This paper presents a performance index for topology and shape optimization of plate bending problems with displacement constraints. The performance index is developed based on the scaling design approach. This performance index is used in the Performance-Based Optimization (PBO) method for plates in bending to keep track of the performance history when inefficient material is gradually removed from the design and to identify optimal topologies and shapes from the optimization process. Several examples are provided to illustrate the validity and effectiveness of the proposed performance index for topology and shape optimization of bending plates with single and multiple displacement constraints under various loading conditions. The topology optimization and shape optimization are undertaken for the same plate in bending, and the results are evaluated by using the performance index. The proposed performance index is also employed to compare the efficiency of topologies and shapes produced by different optimization methods. It is demonstrated that the performance index developed is an effective indicator of material efficiency for bending plates. From the manufacturing and efficient point of view, the shape optimization technique is recommended for the optimization of plates in bending. Received November 27, 1998?Revised version received June 6, 1999  相似文献   

10.
Homogenization or density-based topology optimization methods work by distributing a fixed amount of material to the most effective areas of the design domain so as to create an optimal structural configuration that meets the minimum compliance criteria. These topology optimization methods generally cannot control the maximum stress levels of the structure; therefore, the smoothened optimum structure is not guaranteed to be ready for immediate use. This can be because it is either unsafe if the maximum stress at this structure exceeds the strength limit, or over designed if the maximum stress is far below the stress limit. Difficult and complex shape optimization must then be done to obtain a minimum-weight structure that meets the maximum stress constraint. This paper proposes an adaptive volume constraint (AVC) algorithm, a heuristic approach, in place of traditional topology optimization methods so that the maximum stress in the optimal structural configuration will be below the predefined stress limit and the smoothened structure will be directly applicable. In order to test the applicability and robustness of the AVC algorithm, topology optimization using both a traditional fixed volume constraint and an AVC are tested on a number of configuration design problems. To further illustrate the usefulness of the AVC algorithm, shape optimizations at the maximum stress constraint are also conducted on the smooth structural models by both optimization approaches on an identical problem set.  相似文献   

11.
A topology optimization approach that makes use of nonlinear design variable-to-sizing relationship is presented. A finite element (FE) model is used to describe the loaded structure, but unlike the microstructure approach, the decision is whether an element in the continuum should have maximum or minimum cross-sectional dimension while its material density and moduli are held constant. This approach is applied to reinforcement layout optimization of a very large and geometrically complex Composite Advanced Sail (CAS) structure under an asymmetric wave slap loading condition. A high-complexity model in the form of multilayered shell and a low-complexity model in the form of stiffened shell are developed for the layout optimization of the CAS and solved for minimum strain energy. The effects of constraints such as buckling instability on optimal placement of internal stiffeners are also explored. Based on the results of the layout optimization, a new FE model of the CAS is developed and optimized for minimum weight. Depending upon the degree of variability in skin thickness, the results show a weight saving of up to 19% over the original model.  相似文献   

12.
We present a level set based shape and topology optimization method for maximizing the simple or repeated first eigenvalue of structure vibration. Considering that a simple eigenvalue is Fréchet differentiable with respect to the boundary of a structure but a repeated eigenvalue is only Gateaux or directionally differentiable, we take different approaches to derive the boundary variation that maximizes the first eigenvalue. In the case of simple eigenvalue, material derivative is obtained via adjoint method, and variation of boundary shape is specified according to the steepest descent method. In the case of N-fold repeated eigenvalue, variation of boundary shape is obtained as a result of a N-dimensional algebraic eigenvalue problem. Constraint of a structure’s volume is dealt with via the augmented Lagrange multiplier method. Boundary variation is treated as an advection velocity in the Hamilton–Jacobi equation of the level set method for changing the shape and topology of a structure. The finite element analysis of eigenvalues of structure vibration is accomplished by using an Eulerian method that employs a fixed mesh and ersatz material. Application of the method is demonstrated by several numerical examples of optimizing 2D structures.  相似文献   

13.
In this paper, a new non-probabilistic reliability-based topology optimization (NRBTO) method is proposed to account for interval uncertainties considering parametric correlations. Firstly, a reliability index is defined based on a newly developed multidimensional parallelepiped (MP) convex model, and the reliability-based topology optimization problem is formulated to optimize the topology of the structure, to minimize material volume under displacement constraints. Secondly, an efficient decoupling scheme is applied to transform the double-loop NRBTO into a sequential optimization process, using the sequential optimization & reliability assessment (SORA) method associated with the performance measurement approach (PMA). Thirdly, the adjoint variable method is used to obtain the sensitivity information for both uncertain and design variables, and a gradient-based algorithm is employed to solve the optimization problem. Finally, typical numerical examples are used to demonstrate the effectiveness of the proposed topology optimization method.  相似文献   

14.
Employing the floating frame of reference formulation in the topology optimization of dynamically loaded components of flexible multibody systems seems to be a natural choice. In this formulation the deformation of flexible bodies is approximated by global shape functions, which are commonly obtained from finite element models using model reduction techniques. For topology optimization these finite element models can be parameterized using the solid isotropic material with penalization (SIMP) approach. However, little is known about the interplay of model reduction and SIMP parameterization. Also securing the model reduction quality despite major changes of the design during the optimization has not been addressed yet. Thus, using the examples of a flexible frame and a slider-crank mechanism this work discusses the proper choice of the model reduction technique in the topology optimization of flexible multibody systems.  相似文献   

15.
A simple approach to structural frequency optimization   总被引:8,自引:0,他引:8  
This paper presents a simple solution strategy to find the shape and topology of a general structure that maximize or minimize the natural frequency. The structure is modelled with a fine mesh of finite elements. During an evolutionary process, a small part of the material is removed from the structure at the end of each finite element analysis. A criterion is established as to which elements should be eliminated so that the frequency of the resulting structure can be increased or reduced. It is found that the proposed simple method is effective in solving frequency optimization problems which usually require sophisticated mathematical programming techniques to solve.  相似文献   

16.
This paper presents a new approach for optimizing shell structures considering their mid surface design including cut-outs. Therefore we introduced a manufacturing constraint to the 3D topology optimization based on the density method in order to receive an optimized structure without undercuts and with a constant wall thickness, so that these structures can be manufactured by deep drawing in one step. It is shown that introducing cut-outs while increasing the shell thickness can improve the performance of shell structures considering their stiffness at a constant mass.  相似文献   

17.
Combined shape and reinforcement layout optimization of shell structures   总被引:1,自引:0,他引:1  
This paper presents a combined shape and reinforcement layout optimization method of shell structures. The approach described in this work is applied to optimize simultaneously the geometry of the shell mid-plane as well as the layout of surface stiffeners on the shell. This formulation involves a variable ground structure, since the shape of the shell surface is modified in the course of the process. Here we shall consider a global structural design criterion, namely the compliance of the structure, following basically the classical problem of distributing a limited amount of material in the most favourable way.The solution to the problem is based on a finite element discretization of the design domain. The material within each of the elements is modelled by a second-rank layered Mindlin plate microstructure. By a simple modification, this type of microstructure can be used to find the optimum distribution of stiffeners on shell structures. The effective stiffness properties are computed analytically through a smear-out procedure. The proposed method has been implemented into a general optimization software called Odessy and satisfactorily applied to the solution of some numerical examples, which are illustrated at the end of the paper.  相似文献   

18.
This paper investigates the optimal distribution of damping material in vibrating structures subject to harmonic excitations by using topology optimization method. Therein, the design objective is to minimize the structural vibration level at specified positions by distributing a given amount of damping material. An artificial damping material model that has a similar form as in the SIMP approach is suggested and the relative densities of the damping material are taken as design variables. The vibration equation of the structure has a non-proportional damping matrix. A system reduction procedure is first performed by using the eigenmodes of the undamped system. The complex mode superposition method in the state space, which can deal with the non-proportional damping, is then employed to calculate the steady-state response of the vibrating structure. In this context, an adjoint variable scheme for the response sensitivity analysis is developed. Numerical examples are presented for illustrating validity and efficiency of this approach. Impacts of the excitation frequency as well as the damping coefficients on topology optimization results are also discussed.  相似文献   

19.
Recent advances in level-set-based shape and topology optimization rely on free-form implicit representations to support boundary deformations and topological changes. In practice, a continuum structure is usually designed to meet parametric shape optimization, which is formulated directly in terms of meaningful geometric design variables, but usually does not support free-form boundary and topological changes. In order to solve the disadvantage of traditional step-type structural optimization, a unified optimization method which can fulfill the structural topology, shape, and sizing optimization at the same time is presented. The unified structural optimization model is described by a parameterized level set function that applies compactly supported radial basis functions (CS-RBFs) with favorable smoothness and accuracy for interpolation. The expansion coefficients of the interpolation function are treated as the design variables, which reflect the structural performance impacts of the topology, shape, and geometric constraints. Accordingly, the original topological shape optimization problem under geometric constraint is fully transformed into a simple parameter optimization problem; in other words, the optimization contains the expansion coefficients of the interpolation function in terms of limited design variables. This parameterization transforms the difficult shape and topology optimization problems with geometric constraints into a relatively straightforward parameterized problem to which many gradient-based optimization techniques can be applied. More specifically, the extended finite element method (XFEM) is adopted to improve the accuracy of boundary resolution. At last, combined with the optimality criteria method, several numerical examples are presented to demonstrate the applicability and potential of the presented method.  相似文献   

20.
This work presents a computational model for the topology optimization of a three-dimensional linear elastic structure. The model uses a material distribution approach and the optimization criterion is the structural compliance, subjected to an isoperimetric constraint on volume. Usually the obtained topologies using this approach do not characterize a well-defined structure, i.e. it has regions with porous material and/or with checkerboard patterns. To overcome these problems an additional constraint on perimeter and a penalty on intermediate volume fraction are considered. The necessary conditions for optimum are derived analytically, approximated numerically through a suitable finite element discretization and solved by a first-order method based on the optimization problem augmented Lagrangian. The computational model is tested in several numerical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号