首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the damage evolution behavior was evaluated considering the effect of the textile structure and water absorption. Damage observation was conducted by the integration of non-destructive and direct observation methods. Candidate textile reinforcements were T300-3k plain woven fabric (PW) and T700S-12k multi-axial knitted fabric (MA). The effect of water absorption on the performances of compression after impact (CAI) and PIF were small in PW CFRP laminates. Conversely, PIF properties of water-absorbed MA CFRP laminates drastically decreased than that of dry ones. CAI strength was not affected by water absorption. PIF performance of dry MA CFRP was fairly higher than that of the others. From the precise observation, some evidences of interfacial deterioration caused by water absorption were confirmed in both PW and MA CFRP laminates.  相似文献   

2.
Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking.  相似文献   

3.
The use of externally bonded carbon fiber-reinforced polymer (EB-CFRP) to strengthen deficient reinforced concrete (RC) beams has gained in popularity and has become a viable and cost-effective method. Fatigue behavior of RC beams strengthened with FRP is a complex issue due to the multiple variables that affect it (applied load range, frequency, number of cycles). Very few research studies have been conducted in shear under cyclic loading. The use of prefabricated CFRP L-shaped laminates (plates) for strengthening RC beams under static loading has proven to be technically feasible and very efficient. This study aimed to examine the fatigue performance of RC T-beams strengthened in shear for increased service load using prefabricated CFRP L-shaped laminates. The investigation involved six laboratory tests performed on full-size 4520 mm-long T-beams. The specimens were subjected to fatigue loading up to six million load cycles at a rate of 3 Hz. Two categories of specimens (unstrengthened and strengthened) and three different transverse-steel reinforcement ratios (Series S0, S1, and S3) were considered. Test results were compared with the upper fatigue limits specified by codes and standards. The specimens that did not fail in fatigue were then subjected to static loading up to failure. The test results confirmed the feasibility of using CFRP L-shaped laminates to extend the service life of RC T-beams subjected to fatigue loading. The overall response was characterized by an accelerated rate of damage accumulation during the early cycles, followed by a stable phase in which the rate slowed significantly. In addition, the strains in the stirrups decreased after the specimens were strengthened with CFRP, despite the higher applied fatigue loading. Moreover, the addition of L-shaped laminates enhanced the shear capacity of the specimens and changed the failure mode from brittle to ductile under static loading. Finally, the presence of transverse steel in strengthened beams resulted in a substantially reduced gain in shear resistance due to CFRP, confirming the existence of an interaction between the transverse steel and the CFRP.  相似文献   

4.
A simulation model for the delamination extension of stitched CFRP laminates and 3-D orthogonal interlocked fabric composites (3-D OIFC) has been developed using a 2-D finite element method incorporating interlaminar tension test results to simulate the experimental results of their DCB tests. The mechanical properties of through-the-thickness fiber were determined from the results of interlaminar tension tests in which the specimen included only one through-the-thickness yarn. The fracture phenomena around the through-the-thickness thread, such as debonding from the in-plane layer, slack absorption, fiber bridging, and the pull-out of broken threads from the in-plane layers, are also introduced into the FEM model. The present FEM simulation results were compared to DCB test results for certain stitched laminates and a 3-D OIFC, and the simulation results showed good agreement with the experimental results of DCB tests, including the load–displacement curve and Mode I strain energy release rate (GI). While it was difficult to estimate GI accurately when the DCB test specimen included different types of z-fiber fracture modes, the present model of FEM analysis can simulate the experimental results of DCB tests of stitched laminates and 3-D OIFC. It is suggested that the GI of CFRP with arbitrary z-fiber densities can be predicted by using this FEM analysis model together with interlaminar tension test results.  相似文献   

5.
A fatigue life to the initiation of transverse cracks in cross-ply carbon fiber-reinforced plastic (CFRP) laminates has been predicted using properties of the fatigue strength of unidirectional CFRP in the 90° direction. In the experiments, unidirectional [90]12 laminates were used to obtain a plot of maximum stress versus number of cycles to breaking, and two types of cross-ply laminates of [0/904]S and [0/906]S were used to evaluate the initiation and multiplication of transverse cracks under fatigue loading. Transverse cracks were studied by optical microscopy and soft X-ray photography. Analytical and experimental results showed good agreement, and the fatigue life for transverse crack initiation in cross-ply laminates was predicted successfully from the fatigue strength properties of the unidirectional CFRP in the 90° direction. The prediction results showed a conservative fatigue life than the experimental results.  相似文献   

6.
Intralaminar and interlaminar fatigue crack growth behaviours under mode I loading were investigated with conventional and interlayer toughened unidirectional CFRP laminates. For intralaminar crack growth tests, initial defects were introduced using “intralaminar film insertion method”, in which a release film is inserted inside a single lamina prepreg. A fatigue test under a constant maximum energy release rate, Gmax, was carried out using DCB specimens. It was found that the intralaminar fatigue crack growth property of the interlayer toughened CFRP laminates was the same as that of the conventional CFRP laminates. For the interlayer toughened CFRP laminates, the Gmax with a given crack growth rate, da/dN, was much lower for intralaminar crack growth than for interlaminar crack growth. The da/dN-Gmax curve at zero crack extension, Δa = 0, which was estimated by extrapolating the da/dNa relationship, was not affected by bridging fibres, and most conservative for the interlayer toughened CFRP laminates.  相似文献   

7.
High-velocity impact damage in CFRP laminates was studied experimentally and numerically. Part I of this study observed and evaluated near-perforation damage in the laminates and characterized the damage pattern experimentally. Part II predicts the extension of high-velocity impact damage based on smoothed particle hydrodynamics (SPH), which facilitates the analysis of large deformations, contact, and separation of objects. A cross-ply laminate was divided into 0° and 90° layers, and virtual interlayer particles were inserted to express delamination. The damage patterns predicted on the surfaces and cross-sections agreed well with the experiments. The analyzed delamination shape was similar to that resulting from a low-velocity impact, consisting of pairs of fan-shaped delaminations symmetric about the impact point. Finally, the mechanisms of high-velocity impact damage in CFRP laminates are discussed based on the observations and numerical analyses.  相似文献   

8.
In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties.
The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103–106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure.  相似文献   

9.
基于缝合层板单层单胞细观力学模型,研究了单层板在拉、压、剪下的力学特性。根据经典层板理论建立了缝合层板在双轴载荷下的强度模型,并考虑了缝合造成表面层和内部层刚度和强度的差异。通过有限元软件ABAQUS分析了双轴载荷多种工况下缝合层板的损伤演化过程,揭示了缝合层板的失效机理,获得了缝合层板在双轴载荷下的失效包络线以及对应比率载荷下的应力应变曲线。所预测的失效模式和失效强度与实验取得了较好的吻合。通过分析表明缝合层板单层在剪切载荷下表现出一定的非线性特性。多轴多向层板在双轴载荷下表现出较强的耦合性。  相似文献   

10.
It is important to assess fiber orientation, material properties and part defect because strength and stiffness of composites depend on fiber orientation of CFRP (carbon fiber reinforced plastics). A one-sided pitch–catch setup was used in the detection and evaluation of ultrasonic wave behavior and fiber orientation in the unidirectional CFRP composite laminates. Two Rayleigh wave transducers were joined head-to-head and used in the pitch–catch mode on the surface of the composites. The pitch–catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave to subtle flaw conditions in the composite. Especially, one-sided ultrasonic measurement was made with using a Rayleigh wave transducers and the Rayleigh ultrasonic waves were extensively characterized in the CFRP composite laminates. Also, a conventional scanner was used in an immersion tank for extracting fiber orientation information in the unidirectional laminate. Therefore, it is thought that the proposed method is useful to evaluate integrity of CFRP laminates.  相似文献   

11.
The goal of the present study was to investigate the influence of multi-wall carbon nanotubes (MWCNTs) on the impact and after impact behaviour of carbon fiber reinforced polymer (CFRP) laminates. About 0.5% per weight MWCNTs were dispersed via a high shear device in the epoxy matrix (Bisphenol A) of carbon reinforced quasi-isotropic laminates. Subsequently, the modified CFRPs were subjected to low-energy impact and directly compared with unmodified laminates. In previous studies, the beneficial effect of the MWCNT inclusion to the fracture properties of CFRPs has been demonstrated. In terms of the CFRP impact performance, enhanced performance for the CNT doped specimens was observed for higher energy levels. However, the after-impact properties and more specifically compression after impact were improved for both the effective compression modulus and the compression strength. In addition, compression–compression fatigue after impact performance of the CNT modified laminates was also improved, by extending the fatigue life.  相似文献   

12.
The influence of impact energy and stacking sequence on the damage resistance and Compression After Impact (CAI) strength of Carbon and Glass Fibre Reinforced Plastic (CFRP and GFRP respectively) hybrid laminates is investigated. CAI tests demonstrate that, in comparison to fully CFRP laminates, hybrid laminates show increases in structural efficiency of up to 51% for laminates subject to a 12J impact and 41% for those subject to an 18J impact. Laminates displaying the highest stresses at failure are those that exploit stacking sequences and GFRP content to prevent delaminations from forming close to the outer surface of the laminate during impact. This favourable damage morphology inhibits both sublaminate-buckling-driven delamination propagation and anti-symmetric laminate buckling failures.  相似文献   

13.
In this paper, the damage failure and behaviour of stitched composites under compression after impact (CAI) loading are experimentally investigated. This study focuses on the effect of stitch density and stitch thread thickness on the CAI strength and response of laminated composites reinforced by through-thickness stitching. Experimental findings show that stitched composites have higher CAI failure load and displacement, which corresponds to higher energy absorption during CAI damage, mainly attributed to greater energy consumption by stitch fibre rupture. The coupling relationships between CAI strength, impact energy, stitch density and stitch thread thickness are also revealed. It is understood that the effectiveness of stitching has high dependency on the applied impact energy. At low impact energy range, CAI strength is found to be solely dependent on stitch density, showing no influence of stitch thread thickness. It is however observed that stitch fibre bridging is rendered ineffective in moderately stitched laminates during compressive failure, as local buckling occurs between stitch threads, resulting in unstitched and moderately stitched laminates have similar CAI strength. The CAI strength of densely stitched laminates is much higher due to effective stitch fibre bridging and numerous stitch thread breakages. At high impact energy level, CAI strength is discovered to be intimately related to both stitch density and stitch thread thickness. Since CAI failure initiates from impact-induced delamination area, stitch fibre bridging is considerable for all specimens due to the relatively large delamination area present. Stitch threads effectively bridge the delaminated area, inhibit local buckling and suppress delamination propagation, thus leading to increased CAI strength for laminates stitched with higher stitch density and larger stitch thread thickness. Fracture mechanisms and crack bridging phenomenon, elucidated by X-ray radiography are also presented and discussed. This study reveals novel understanding on the effectiveness of stitch parameters for improving impact tolerance of stitched composites.  相似文献   

14.
It is well known that standardised tension–tension fatigue test specimens of unidirectional (UD) glass-fibre-reinforced plastics (GFRP) laminates tend to fail at end tabs. The true fatigue life is then underestimated. The first objective of this study was to find for UD GFRP laminates a test specimen that fails in the gauge section. The second objective was to compare fatigue performance of two laminates, one having a newly developed UD powder-bound fabric as a reinforcement and the other having a quasi-UD stitched non-crimp fabric as a reinforcement. In the first phase, a rectangular specimen in accordance with the ISO 527-5 standard and two slightly different dog-bone shaped specimens were evaluated by means of finite element modelling. Subsequent comparative fatigue tests were performed for the laminates with the three specimen types. The results showed that the test specimen type has a significant effect on the failure mode and measured fatigue life of the laminates. A significantly higher fatigue life was measured for the laminate with the powder-bound fabric reinforcement when compared to the laminate with the stitched reinforcement.  相似文献   

15.
As carbon fibers are electrical conductors, the measurement of the electrical resistance appears to be a valuable technique for the in situ detection of various types of damage in carbon fiber reinforced polymers (CFRP) laminates. In such cases, carbon fibers are both the reinforcement and the sensor to detect damage in CFRP laminates. The damage-detecting method of CFRP laminates by electrical resistance measurement that are investigated in this study is made possible by attaching electrodes on the surface of the CFRP structures without special manufacturing.

In this paper, we investigate the electrical resistance change as a damage parameter of fatigue damage such as the degradation of residual strength and stiffness. The measured stiffness and electrical resistance change during fatigue tests showed a very similar trend of change. This is because cumulative fatigue damage is represented by the degradation of residual stiffness; these damages also cause change in electrical resistance. Thus, we can use this change in electrical resistance as a damage parameter. We also predict the future damage of composite laminates in fatigue loading from electrical resistance damage model by following a stiffness degradation model. Electrical resistance gradually increased as the stiffness reduced, and showed a very abrupt change when final fatigue failure was imminent. The predicted value showed good agreement with the experimental data except in the final stage, where stiffness and electrical resistance changed abruptly.  相似文献   


16.
The research dealt with the relation between damage and tension–tension fatigue residual strength (FRS) in a quasi-isotropic carbon fibre reinforced epoxy resin laminate. The work was organized in two phases: during the first one, composite laminates were damaged by means of an out-of-plane quasi-static load that was supposed to simulate a low velocity impact; in the second phase, fatigue tests were performed on damaged and undamaged specimens obtained from the original composite laminates. During the quasi-static transverse loading phase, damage progression was monitored by means of acoustic emission (AE) technique. The measurement of the strain energy accumulated in the specimens and of the acoustic energy released by fracture events made it possible to estimate the amount of induced damage and evaluate the quasi-static residual tensile strength of the specimens. A probabilistic failure analysis of the fatigue data, reduced by the relative residual strength values, made it possible to relate the FRS of damaged specimens with the fatigue strength of undamaged ones.  相似文献   

17.
Laser ultrasonic based nondestructive evaluation (NDE) techniques are being increasingly used in aerospace industries. Generally, the service lifetime for an aircraft could be more than 25 years. Thus, the composite structures of the aircraft could be susceptible to laser pulse fatigue damage caused by the laser pulse energy in the long-term repetitive maintenance inspection. In this paper, the effect of repeat laser pulse scanning on the mechanical characteristics of unpainted and painted CFRP specimens (USN175BX Carbon UD prepreg, Bisphenol A epoxy resin) is investigated to verify the reliability regarding the use of laser ultrasonic scanning based NDE techniques on the inspection of the CFRP structure. A high-speed laser ultrasonic scanning system is setup to perform repeat scanning of 1300 times on both CFRP specimens at the five laser pulse energy levels using the 532-nm and 1064-nm Q-switched continuous wave lasers. Elastic modulus assessment based on the ultrasonic Lamb wave pitch–catch method is used and the surface condition of the scanned area is investigated by a microscope. As a result, the laser pulse fluences that is shown in this paper are suitable for the long-term repetitive maintenance inspection in unpainted and painted CFRP structure even if it demonstrates an embrittlement phenomenon similar to the modulus measurement resolution in the unpainted CFRP specimen. In addition, the laser pulse fluence for maximum signal-to-noise ratio without any damage is investigated in both unpainted and painted CFRP specimens. As a result, both 102.45 mJ/cm2 in unpainted CFRP specimen and 51 mJ/cm2 in painted CFRP specimen can be the laser pulse energy for the maximum signal-to-noise ratio without any damage.  相似文献   

18.
Effects of temperature on impact damages in CFRP composite laminates   总被引:1,自引:0,他引:1  
In this paper, the effect of temperature variations (low and high temperatures) was studied experimentally on impact damage to CFRP laminates. The composite laminates used in this experiment were CF/EPOXY orthotropic laminated plates with lay-up [06/906]s and [04/904]s, and CF/PEEK orthotropic laminated plates with a lay-up of [06/906]s. A steel ball launched by the air gun was used to generate the CFRP laminate impact damage. For impact-damaged specimens, nondestructive evaluation (NDE), such as a scanning acoustic microscopy (SAM) was performed on the delamination-damaged samples to characterize damage growth at different temperatures.

Therefore, this study was undertaken to experimentally determine the interrelations between impact energy and impact damage (i.e. the delamination area and matrix) of CFRP laminates (CF/EPOXY and CF/PEEK) subjected to foreign object damages (FOD) at low and high temperatures.  相似文献   


19.
An addressable conducting network (ACN) enables the structural condition to be monitored by the electrical resistance between electrodes on surface of CFRP (carbon fiber reinforced polymer) structure. To improve the reliability of ACN for damage detection, the contact resistance between the electrodes and CFRP laminates needs to be minimized. In this paper, the silver nanoparticles electrodes were fabricated via printed electronics techniques on CFRP composite. The contact resistance between the silver electrodes and CFRP was measured with respect to various fabrication conditions such as the sintering temperature of silver nanoink and the surface roughness of CFRP laminates. The interfaces between silver electrode and carbon fibers were observed using scanning electron microscope (SEM). From the study, it was found that the lowest contact resistance of 0.3664 Ω could be achieved when the sintering temperature of the silver nanoink and surface roughness were 120 °C and 230 nm, respectively.  相似文献   

20.
The aim of the present work is to develop the ultrasonic spectroscopy method using laser thermoelastic generation and piezoelectric detection of broadband acoustic pulses for quantitative evaluation of the influence on the ultrasonic attenuation coefficient of microscopic dispersed voids and interply delaminations in CFRP laminates. The specimens under study have different entire porosity values up to 10% determined by the X-ray computer tomography. The ultrasonic attenuation resonance is observed in all specimens governed by their periodic layered structure. The absolute maximum and the frequency bandwidth of the resonance peak depend on the total porosity level formed by the predominant type of imperfections, either of only microscopic spheroidal voids entrapped in the epoxy layers or of additional extended interply delaminations. The derived empirical relations between these parameters and the total porosity level can be used for rapid nondestructive evaluation of the structure of CFRP composite laminates subject to different manufacturing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号