首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A numerical study of the behavior of geosynthetic-reinforced embankments constructed on soft rate-sensitive soil with and without prefabricated vertical drains (PVDs) is described. The time-dependent stress–strain-strength characteristic of rate-sensitive soil is taken into account using an elasto-viscoplastic constitutive model. The effects of reinforcement stiffness, construction rate, soil viscosity as well as PVD spacing are examined both during and following construction. A sensitivity analysis shows the effect of construction rate and PVD spacing on the short-term and long-term stability of reinforced embankments and the mobilized reinforcement strain. For rate-sensitive soils, the critical period with respect to the stability of the embankment occurs after the end of the construction due to a delayed, creep-induced, build-up of excess pore pressure in the viscous foundation soil. PVDs substantially reduce the effect of creep-induced excess pore pressure, and hence not only allow a faster rate of consolidation but also improve the long-term stability of the reinforced embankment. Furthermore, PVDs work together with geosynthetic reinforcement to minimize the differential settlement and lateral deformation of the foundation. The combined use of the geosynthetic reinforcement and PVDs enhances embankment performance substantially more than the use of either method of soil improvement alone.  相似文献   

2.
沉降变形与卸载标准是铁路路基堆载预压的主要问题。针对处于沿海滩涂软土路基之上的铁路专用线,采用插塑板与堆载预压相结合的方案进行地基处理,开展了大量的表层沉降、孔隙水压力、分层沉降等观测项目。据实测资料,总结分析了路基表面的沉降规律,并考虑了路基分层沉降与孔隙水压力的变化规律,全面地揭示了整个路基地层的沉降变化特征,运用双曲线合理地预测了工后沉降,且推算出路基整体的固结度,采用工后沉降与地基固结度建立卸载时机判别标准。为堆载预压的卸载时机判别标准研究提供了一种新的思路。  相似文献   

3.
根据某一高速公路塑料套管混凝土桩加固软土地基工程实例,对桩土应力、地表沉降、横向位移、不同深度孔隙水压力进行观测,讨论了塑料套管混凝土桩桩承式路堤的工作机理。结果表明:塑料套管桩加筋路堤的临界高度约为1.26倍桩净距,观测期末,荷载分担比接近89%;桩帽和桩间土最大差异沉降为30 mm左右,且应力集中比随着差异沉降的增大而线性增大;路堤堤脚附近不同深处横向位移随着路堤填筑高度的增加而增加,施工结束时,地表以下2.5 m处横向位移最大,为12.86 mm;横向位移-沉降比和横向位移增加率随着路堤填筑高度的增加逐步减小并趋于稳定,塑料套管混凝土桩加筋路堤系统能够有效防止路堤横向位移的发展和改善路堤的整体稳定性。  相似文献   

4.
 海积软土在海堤荷载作用下的沉降变形往往是堤防建造和围海造地等重大工程中的关键环节,为研究海积软土的变形特性,在室内单元体试验的基础上,由修正Cam-clay模型改进来的软土模型中加入海积软土固有的结构性特征。结合实际的工程项目,建立相应的数值分析模型,并研究大面积均匀堆载和新建海堤不均匀荷载作用下海积软土的长期沉降和超静孔隙水压力消散特性,分析中考虑竖井地基处理和海堤填筑进程的影响。通过与原位监测数据的对比发现,该模型能够很好地反映海堤下方处和厂区大面积回填处的地基沉降和侧向变形,同时能较好地考虑填筑过程中地基不同深度处超静孔隙水压力的累积和消散过程。  相似文献   

5.
Improvement of ultra-soft soil using prefabricated vertical drains   总被引:1,自引:0,他引:1  
A case study of using prefabricated vertical drains (PVDs) to accelerate the consolidation of an ultra-soft fine-grained soil with high moisture content for a land reclamation project is described in this paper. Large-scale laboratory model tests were carried out to assess the suitability of the selected PVD and the effectiveness of the PVD in the consolidation of the ultra-soft soil. The model tests indicate that the discharge capacity of the drain can decrease substantially after the drain has experienced large deformations. To overcome this problem, PVDs were installed in two rounds. The first round was before the application of surcharge, and the second round was after substantial settlements have taken place. Field instrumentations were utilized to monitor the performance of PVDs during consolidation. The monitored settlement and pore water pressure results are presented and discussed. The study shows that it is effective to use PVD for the consolidation of the ultra-soft soil if special care has been taken in selection and installation of PVD and in fill placement to overcome the difficulties involved in the consolidation of ultra-soft soil.  相似文献   

6.
Generally numerical modelling can provide an accurate and cost-effective approach to understand the behaviour of geosynthetic-reinforced column-supported embankment. When the problem geometry cannot be simplified to the two-dimensional plane-strain or axisymmetric, a full three-dimensional solution is required to obtain sensible results. This study presents a modelling of the geosynthetic-reinforced composite ground supporting a road embankment. Response of soft soil is captured by adopting Modified Cam-Clay model. In addition, Hoek-Brown constitutive model is considered to simulate non-linear stress-dependent yield criterion for Concrete Injected Columns (CIC) that describes shear failure and tensile failure by a continuous function. To assess whether the proposed numerical model can capture real behaviour of composite ground, field monitoring data of deep soft clay deposit improved by CIC from Gerringong Upgrade is used to validate the model. The settlement and lateral displacements of ground, stress transferred to column, and pore water pressure results for the embankment during and after the construction, measured using the field instrumentations including settlement plates, inclinometers, earth pressure cells on CIC, and pore pressure transducers, are compared with numerical predictions. In addition, the numerical results provide insights to investigate load transfer mechanism in the composite ground, capturing response of soil – column - embankment system.  相似文献   

7.
Ground movement induced by parallel EPB tunnels in silty soils   总被引:5,自引:0,他引:5  
When constructing tunnels with poor geotechnical conditions in densely populated urban areas, there are many challenges including intolerable ground movement, face failure, and potential damage to adjacent structures (i.e., tunnels, piles, and pipelines). Earth pressure balanced (EPB) shields have been widely used to solve these problems. However, tunnel excavation causes release of in situ soil stress, which results in the soil movement. This paper focuses on field measurements of parallel tunnels using EPB shields in silty soils. Specifications on the ground profile, construction procedure, and field monitoring of pore pressure in the soils, ground subsidence, subsurface settlement, and horizontal displacement are reported. During shield advancement, the pore pressures in the soils showed the zigzag-shape distribution along the distance. The settlements indicated upheaval-subsiding behavior in the longitudinal direction. The soil settlement decreased from the crown of the excavation face to the ground surface and to the invert of the excavation face in the transverse direction. Outward horizontal displacements of soils adjacent to the tunnels and inward horizontal displacements of the soils near the ground surface were also observed before the tail injection. The second tunnel excavated rendered a slight squeezing effect on the first tunnel. These satisfactory measurements indicate the effectiveness of the EPB technique in reducing potential damage to adjacent structures.  相似文献   

8.
拓宽黄土路基湿化破坏机制模型试验研究   总被引:3,自引:1,他引:2  
 为研究拓宽黄土路基浸水湿化破坏机制与模式,在土工离心机上设计并安装位移量测系统,以西安—潼关高速公路拓宽工程为研究载体,建立与实际应力相符的离心试验模型;针对浸水湿化后黄土拓宽路基的沉降变形规律和破坏形式进行研究,基于试验结果开展高填方黄土路堤破坏机制的讨论。研究结果表明,拓宽路基坡脚处高含水量对拓宽黄土路基稳定性影响极为显著,在地下水位较浅处的地带,强降雨天气或地下水位骤升所引起的拓宽路基荷载下黄土地基的局部失稳会极大威胁上部拓宽路基的安全,浸水破坏滑裂面的形成是一个渐进破坏过程。由于地基局部湿软,抗剪强度降低,地基的起始剪切破坏发生于老路坡脚处,一旦产生过大的变形量将会引起整个路基自上而下的滑移。地基破坏时的滑动面近似为圆弧状,建议采用裂隙圆弧法对拓宽荷载下地基进行稳定性评价。试验结果还表明,新老路基拼接带土体中的加筋材料起到裹附作用,可增强路基的板结效果,形成有效的土拱效应,这样就充分利用路堤填料本身的刚度,调整地基的沉降变形。  相似文献   

9.
《Soils and Foundations》2014,54(5):938-954
The present paper addresses the numerical prediction of the behavior of a ground and a reservoir dyke with a retaining wall at the site of a regulating reservoir whose soft soil foundation is improved by using both the usual embankment preloading and vacuum consolidation. To evaluate the settlement, the lateral deformation, and the dissipation of pore pressure during vacuum preloading, a numerical analysis using an elasto-plastic FEM for soil–water coupled problems, incorporating the SYS Cam-clay model, is carried out in two dimensions. However, a change in the soil parameters during the vacuum preloading leads to a less accurate computation. To account for the uncertainties in the input parameters of the constitutive model for the improved ground, an inverse analysis approach is adopted. The particle filter is used to identify the compression index of the clay layers and the coefficient of permeability of the organic soil layer based on the measured settlement at the bottom of the preloading embankment during the vacuum consolidation. The reservoir dyke with a retaining wall is constructed on an improved foundation after removing the preloading embankment, and an attempt is made to predict its performance after construction by an elasto-plastic FEM for soil–water coupled problems using the identified parameters.  相似文献   

10.
Investigation into time dependent long-term performance of Prefabricated Vertical Drains (PVDs) combined with vacuum consolidation in thick deposits of clay has been extremely limited. Predicting both settlements and excess pore pressures in such cases has become increasingly challenging when time duration is long-term, e.g. several years. In discussing such matter, finding a suitable model to predict the long-term performance is inevitable. Elasto-plastic analysis models such as Cam-Clay cannot predict long-term time-dependent deformational behaviour in soft soils. In this technical note, a Biot type fully-coupled creep-based elastic viscoplastic (EVP) finite element (FE) numerical model has been extended for application in vacuum consolidation. The vacuum consolidation section of the embankment constructed in Ballina, New South Wales, Australia (hereafter referred as Ballina embankment), is analysed using the model through a unit cell analysis and the numerical predictions are compared with field performance monitoring data up to 1200 days (>3 years). The proposed analysis method for PVD combined with vacuum consolidation involving an EVP model is found to be capable of predicting both short-term and long-term deformational behaviours. Predictions are improved when an exponential function is used for the secondary compression index in the EVP model. Comparison has also been carried out at another location in the embankment where the foundation clay thickness was different to check the precision of the methodology and for better understanding of ground settlement behaviour. Details of the analysis methodology and its validation against field performance data are presented in this note.  相似文献   

11.
软土地基加筋石灰土路堤离心模型试验数值模拟   总被引:1,自引:0,他引:1  
 建立以离心试验几何尺寸的有限元数值模型,模拟变加速度加载下软土地基加筋石灰土路堤中的位移、土压力、孔隙水压力和加筋拉力随时间的变化规律,并与离心模型试验结果进行比较;同时,采用该数值模型计算了不加筋、加1,2层筋时路堤和地基位移情况。计算结果表明,加筋路堤沉降量、土压力、孔隙水压力和加筋拉力的计算值与离心试验实测值吻合很好或基本一致,表明该数值模型是合理的;不加筋路堤的中心沉降量和坡脚下地基水平位移比加1层筋时明显大一些,两者在加速度为100.0 g时地面坡脚处的水平位移差值达近2 mm,而加2层筋时位移与加1层筋接近。  相似文献   

12.
Dredged marine clay has been widely used as a filling material for land reclamation in China. The difficulty of using the vacuum preloading method to improve the dredged marine clay together with the bottom sediment clay is the different spacing requirement of the PVDs. To solve this problem, the Vacuum Preloading method combined with the Short and Long PVDs (VPSL) is proposed in this paper. The short PVDs are installed only into the dredged marine clay layer in-between the long PVDs which are installed through the whole clay layer. Pilot tests are also conducted at a land reclamation site in Tianjin, China, to investigate the performance of the proposed method. The ground settlement, the applied vacuum pressure and the pore water pressure in the soil are monitored during the pilot tests. The average degrees of consolidation are calculated based on the monitored settlement and pore pressure data. It is found that the proposed VPSL method is more effective for improving top dredged clay together with the bottom sediment clay than the conventional vacuum preloading method. The vane shear strength profiles of soil layers after ground improvement also show that the VPSL method is more effective to achieve a uniform soil strength profile.  相似文献   

13.
In this study the field feasibility of an innovative thermal technique to improve the performance of prefabricated vertical drains (PVD) used in conjunction with the preloading ground improvement method is investigated. For this purpose, two identical 6.0 m high full-scale test embankments for preloading were constructed over the soft Bangkok clay where a conventional PVD system was installed underneath one embankment and a novel prefabricated vertical thermo-drain (PVTD) system was utilized for the other. The PVTD unit consists of a U-tube made of cross-linked polyethylene plastic (PEX) that is attached to a conventional PVD unit. Preheated water at about 90°C is circulated through the attached U-tube to raise the soil temperature underneath the PVTD embankment. The behavior of the two test embankments were compared in terms of excess pore water pressure and consolidation results. The comparison shows the advantage of a PVTD system over a conventional PVD system. The rate of consolidation increases significantly in the PVTD system due to the temperature effect on the hydraulic conductivity. Moreover, the embankment with the PVTD system generates more settlement due to the thermally induced irreversible contraction of saturated normally consolidated soft Bangkok clay.  相似文献   

14.
高等级公路桥头软基真空联合堆载预压加固试验研究   总被引:11,自引:1,他引:11  
对浃里陈大桥桥头试验段的孔隙水压力、分层沉降、地表沉降、土体水平位移等现场监测结果进行了分析;分析结果表明:在真空联合堆载预压加固软基的过程中,由负超静孔隙水压力与正超静孔隙水压力叠加后产生的联合超静孔隙水压力相对较小,一般小于0,有利于路堤的快速堆载;能大幅预消除沉降,工后沉降量小于100mm,满足桥头软基工后沉降要求;影响区土体水平位移沿水平方向距加固区边界20m之外相对较小,沿深度方向,15m以下基本上无水平位移。真空预压的有效影响深度可以大于10m。对地基土体的加固效果进行了检验,检验结果表明,真空联合堆载预压加固后,土体的强度明显增强,加固效果明显。最后结合试验监测成果,对真空联合堆载预压加固软基机理进行了分析,给出了附加应力分布图。  相似文献   

15.
The objective of this paper is to investigate the performance of geogrid reinforced soil walls with panel facing using marginal backfill with and without chimney sand drain subjected to seepage. A series of centrifuge model tests were performed at 40 gravities using a 4.5 m radius large beam centrifuge facility available at IIT Bombay. The results revealed that a geogrid reinforced soil wall with low stiffness geogrid and without any chimney drain experienced a catastrophic failure due to excess pore water pressure that developed in the reinforced and backfill zones at the onset of seepage. In comparison, a soil wall reinforced with stiff geogrid layers was found to perform effectively even at the onset of seepage. Provision of chimney sand drain effectively decreased pore water pressure not only at the wall toe but also at mid-distance from toe of the wall and thereby resulted in enhancing the wall performance under the effect of seepage forces. However, a local piping failure was observed near the toe region of the wall. The observed centrifuge test results were further analysed by performing seepage and stability analyses to evaluate the effect of thickness of sand layer in a chimney drain. An increase in thickness of sand layer in chimney drain was found to improve the discharge values and thereby enhancing the factor of safety against piping near the toe region. Based on the analysis and interpretation of centrifuge test results, it can be concluded that marginal soil can be used as a backfill in reinforced soil walls provided, it has geogrid layers of adequate stiffness and/or proper chimney drain configuration.  相似文献   

16.
真空预压法中塑料排水板弯曲对固结的影响   总被引:1,自引:0,他引:1  
 工程实践表明,真空预压法处理超软弱地基时因过大的地基压缩量而使塑料排水板弯曲,导致其纵向通水量减少,进而影响深层土体的加固效果。为降低这种影响,提出二次插板方案,即先对浅层土体进行处理,待其达到一定强度后,再插设较长的塑料排水板对软基进行整体加固。结合浙江省温州丁山垦区围垦造陆的真空预压工程,对不同弯曲率的塑料排水板进行纵向通水量的测试以确定其纵向渗透系数在加固过程中的变化,并基于ADINA有限元软件,开发邓肯–张本构模型,在三维有限元数值模拟中考虑排水板纵向渗透系数的变化和超软弱土中未消散的初始超孔压。分析比较数值计算结果与监测数据,结果表明,二次插板方案所产生的沉降与孔压消散值均比一次插板方案的要大,计算时考虑排水板弯曲对固结的影响比未考虑这种影响的计算值更接近实际值,所得结论可为类似工程的设计和施工提供理论支持。  相似文献   

17.
Stabilising soft marine clay and estuarine soils via vacuum preloading has become very popular in Australasia over the past decades because it is a cost-effective and time-efficient approach. In recent times, new land on areas outside but adjacent to existing port amenities, the Fisherman Islands at the Port of Brisbane(POB), was reclaimed to cater for an increase in trade activities. A vacuum preloading method combined with surcharge to stabilise the deep layers of soil was used to enhance the application of prefabricated vertical drains(PVDs). This paper describes the performance of this combined surcharge fill and vacuum system under the embankment and also compares it with a surcharge loading system to demonstrate the benefits of vacuum pressure over conventional fill. The performance of this embankment is also presented in terms of field monitoring data, and the relative performance of the vacuum together with non-vacuum systems is evaluated. An analytical solution to radial consolidation with time-dependent surcharge loading and vacuum pressure is also presented in order to predict the settlement and associated excess pore water pressure(EPWP) of deposits of thick soft clay.  相似文献   

18.
Liquefaction of sandy soils is a big threat to the stability and the safety of an earth embankment laid on saturated soils. A large number of liquefaction-induced damages on embankment due to different types of earthquakes have been reported worldwide. In this research, the dynamic behaviors of earth embankment and the reinforcement effects of grouting as remediation method, subjected to moderate earthquake EQ1 and strong earthquake EQ2, were numerically investigated. The seismic behaviors of ground composed of cohesionless sandy soil and cohesive clayey soil were uniformly described by the cyclic mobility (CM) model, which is capable of describing accurately the mechanical property of the soil due to monotonic and cyclic loadings by accounting for stress-induced anisotropy, over-consolidation, and soil structure. It is known from the numerical investigation that the embankment would experience destructive deformation, and that the collapse mode was closely related to the properties of input seismic motion because high intensities and long durations of an earthquake motion could lead to significant plastic deformation and prolonged soil liquefaction. Under the strong seismic loading of EQ2, a circular collapse surface, combined with huge settlement and lateral spread, occurred inside the liquefication zone and extended towards the embankment crest. In contrast, in moderate earthquake EQ1, upheaval was observed at each toe of the embankment, and instability occurred only in the liquefied ground. An anti-liquefaction remediation via grouting was determined to significantly reduce liquefaction-induced deformation (settlement, lateral spreading, and local uplift) and restrain the deep-seated circular sliding failure, even though the top sandy soil liquefied in both earthquakes. When the structure was subjected to EQ2 motion, local failure occurred on the embankment slope reinforced with grouting, and thus, an additional appropriate countermeasure should be implemented to further strengthen the slope. For both input motions, the surface deformation of the considered embankment decreased gradually as the thickness of reinforcement was increased, although the reinforcement effect was no longer significant once the thickness exceeded 6 m.  相似文献   

19.
The deformation characteristics of soil among prefabricated vertical drains (PVDs) subjected to vacuum pressure are investigated using a model test conducted on dredged slurry. Red iron particles are used to indirectly indicate the lateral displacement of soil under vacuum preloading. Test results showed that, in addition to the settlement of soil between two PVDs, there was also lateral displacement that varied with consolidation time and lateral distance from the PVD because of lateral vacuum suction. The lateral displacement arose successively with the increasing lateral distance. And it increased from zero on the PVD surface and dropped back to zero again at the midpoint between the two PVDs. There should have been a maximum value of the lateral displacement at a point near the PVD. The combined vertical and lateral displacement formed a soil pile around the PVD and showed a ‘V’ shaped soil surface.  相似文献   

20.
矩形顶管施工引起的地面沉降变形研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以南宁市轨道交通1号线南湖站Ⅰ号过街通道顶管工程为背景,分别考虑顶管机及后续管节对土体的作用力引起开挖面周围土体的施工时变形、土体损失引起地面永久沉降、注浆对土体损失补偿引起的地面抬升、地层中超孔隙水压力消散发生失水固结效应引起的工后沉降等因素,揭示了在注浆压力作用下矩形顶管隧道周围土体的变形模式,推导了由注浆填充引起的土体竖向变形计算方法,给出了扰动范围土体内超孔隙水消散引起的工后固结沉降的计算公式。运用Mindlin弹性理论解、随机介质理论、分层总和法分别对该工程由土体应力状态变化、地层损失、注浆填充和失水固结4个方面引起的地面变形进行计算,根据计算结果与实测数据的对比分析,对矩形顶管施工扰动引起的地表沉降变形特性进行系统研究,叠加后的计算结果与实测数据变化规律基本一致,且数值吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号