首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xue  -H. Lin  -Z. Du 《Algorithmica》2002,31(4):479-500
Abstract. Let P = {p 1 , p 2 , \ldots, p n } be a set of n {\lilsf terminal points} in the Euclidean plane, where point p i has a {\lilsf service request of grade} g(p i ) ∈ {1, 2, \ldots, n} . Let 0 < c(1) < c(2) < ?s < c(n) be n real numbers. The {\lilsf Grade of Service Steiner Minimum Tree (GOSST)} problem asks for a minimum cost network interconnecting point set P and some {\lilsf Steiner points} with a service request of grade 0 such that (1) between each pair of terminal points p i and p j there is a path whose minimum grade of service is at least as large as \min(g(p i ), g(p j )) ; and (2) the cost of the network is minimum among all interconnecting networks satisfying (1), where the cost of an edge with service of grade g is the product of the Euclidean length of the edge with c(g) . The GOSST problem is a generalization of the Euclidean Steiner minimum tree problem where all terminal points have the same grade of service request. When there are only two (three, respectively) different grades of service request by the terminal points, we present a polynomial time approximation algorithm with performance ratio \frac 4 3 ρ (((5+4\sqrt 2 )/7)ρ , respectively), where ρ is the performance ratio achieved by an approximation algorithm for the Euclidean Steiner minimum tree problem. For the general case, we prove that there exists a GOSST that is the minimum cost network under a full Steiner topology or its degeneracies. A powerful interior-point algorithm is used to find a (1+ε) -approximation to the minimum cost network under a given topology or its degeneracies in O(n 1.5 (log n + log (1/ε))) time. We also prove a lower bound theorem which enables effective pruning in a branch-and-bound method that partially enumerates the full Steiner topologies in search for a GOSST. We then present a k -optimal heuristic algorithm to compute good solutions when the problem size is too large for the branch-and-bound algorithm. Preliminary computational results are presented.  相似文献   

2.
Given n points, called terminals, in the plane ℝ2 and a positive integer k, the bottleneck Steiner tree problem is to find k Steiner points from ℝ2 and a spanning tree on the n+k points that minimizes its longest edge length. Edge length is measured by an underlying distance function on ℝ2, usually, the Euclidean or the L 1 metric. This problem is known to be NP-hard. In this paper, we study this problem in the L p metric for any 1≤p≤∞, and aim to find an exact algorithm which is efficient for small fixed k. We present the first fixed-parameter tractable algorithm running in f(k)⋅nlog 2 n time for the L 1 and the L metrics, and the first exact algorithm for the L p metric for any fixed rational p with 1<p<∞ whose time complexity is f(k)⋅(n k +nlog n), where f(k) is a function dependent only on k. Note that prior to this paper there was no known exact algorithm even for the L 2 metric.  相似文献   

3.
On approximation algorithms for the terminal Steiner tree problem   总被引:1,自引:0,他引:1  
The terminal Steiner tree problem is a special version of the Steiner tree problem, where a Steiner minimum tree has to be found in which all terminals are leaves. We prove that no polynomial time approximation algorithm for the terminal Steiner tree problem can achieve an approximation ratio less than (1−o(1))lnn unless NP has slightly superpolynomial time algorithms. Moreover, we present a polynomial time approximation algorithm for the metric version of this problem with a performance ratio of 2ρ, where ρ denotes the best known approximation ratio for the Steiner tree problem. This improves the previously best known approximation ratio for the metric terminal Steiner tree problem of ρ+2.  相似文献   

4.
We study the Euclidean bottleneck Steiner tree problem: given a set P of n points in the Euclidean plane and a positive integer k, find a Steiner tree with at most k Steiner points such that the length of the longest edge in the tree is minimized. This problem is known to be NP-hard even to approximate within ratio and there was no known exact algorithm even for k=1 prior to this work. In this paper, we focus on finding exact solutions to the problem for a small constant k. Based on geometric properties of optimal location of Steiner points, we present an optimal -time exact algorithm for k=1 and an O(n2)-time algorithm for k=2. Also, we present an optimal -time exact algorithm for any constant k for a special case where there is no edge between Steiner points.  相似文献   

5.
Ak-extremal point set is a point set on the boundary of ak-sided rectilinear convex hull. Given ak-extremal point set of sizen, we present an algorithm that computes a rectilinear Steiner minimal tree in timeO(k 4 n). For constantk, this algorithm runs inO(n) time and is asymptotically optimal and, for arbitraryk, the algorithm is the fastest known for this problem.  相似文献   

6.
We consider the problem of constructing a shortest Euclidean 2-connected Steiner network in the plane (SMN) for a set of n terminals. This problem has natural applications in the design of survivable communication networks.In [P. Winter, M. Zachariasen, Two-connected Steiner networks: Structural properties, OR Letters 33 (2005) 395-402] we proved that all cycles in SMNs with Steiner points must have pairs of consecutive terminals of degree 2. We use this result and the notion of reduced block-bridge trees suggested by Luebke [E.L. Luebke, k-connected Steiner network problems, PhD thesis, University of North Carolina, USA, 2002] to show that no full Steiner tree in a SMN spans more than ⌊n/3⌋+1 terminals.  相似文献   

7.
Xue  -H. Lin  -Z. Du 《Algorithmica》2008,31(4):479-500
Abstract. Let P = {p 1 , p 2 , \ldots, p n } be a set of n {\lilsf terminal points} in the Euclidean plane, where point p i has a {\lilsf service request of grade} g(p i ) ∈ {1, 2, \ldots, n} . Let 0 < c(1) < c(2) < ⋅s < c(n) be n real numbers. The {\lilsf Grade of Service Steiner Minimum Tree (GOSST)} problem asks for a minimum cost network interconnecting point set P and some {\lilsf Steiner points} with a service request of grade 0 such that (1) between each pair of terminal points p i and p j there is a path whose minimum grade of service is at least as large as \min(g(p i ), g(p j )) ; and (2) the cost of the network is minimum among all interconnecting networks satisfying (1), where the cost of an edge with service of grade g is the product of the Euclidean length of the edge with c(g) . The GOSST problem is a generalization of the Euclidean Steiner minimum tree problem where all terminal points have the same grade of service request. When there are only two (three, respectively) different grades of service request by the terminal points, we present a polynomial time approximation algorithm with performance ratio \frac 4 3 ρ (((5+4\sqrt 2 )/7)ρ , respectively), where ρ is the performance ratio achieved by an approximation algorithm for the Euclidean Steiner minimum tree problem. For the general case, we prove that there exists a GOSST that is the minimum cost network under a full Steiner topology or its degeneracies. A powerful interior-point algorithm is used to find a (1+ε) -approximation to the minimum cost network under a given topology or its degeneracies in O(n 1.5 (log n + log (1/ε))) time. We also prove a lower bound theorem which enables effective pruning in a branch-and-bound method that partially enumerates the full Steiner topologies in search for a GOSST. We then present a k -optimal heuristic algorithm to compute good solutions when the problem size is too large for the branch-and-bound algorithm. Preliminary computational results are presented.  相似文献   

8.
The Steiner tree problem is defined as follows—given a graph G=(V,E) and a subset XV of terminals, compute a minimum cost tree that includes all nodes in X. Furthermore, it is reasonable to assume that the edge costs form a metric. This problem is NP-hard and has been the study of many heuristics and algorithms. We study a generalization of this problem, where there is a “switch” cost in addition to the cost of the edges. Switches are placed at internal nodes of the tree (essentially, we may assume that all non-leaf nodes of the Steiner tree have a switch). The cost for placing a switch may vary from node to node. A restricted version of this problem, where the terminal set X cannot be connected to each other directly but only via the Steiner nodes V?X, is referred to as the Steiner Tree-Star problem. The General Steiner Tree-Star problem does not require the terminal set and Steiner node set to be disjoint. This generalized problem can be reduced to the node weighted Steiner tree problem, for which algorithms with performance guarantees of Θ(lnn) are known. However, such approach does not make use of the fact that the edge costs form a metric. In this paper we derive approximation algorithms with small constant factors for this problem. We show two different polynomial time algorithms with approximation factors of 5.16 and 5.  相似文献   

9.
Given an n-node edge-weighted graph and a subset of k terminal nodes, the NP-hard (weighted) Steiner tree problem is to compute a minimum-weight tree which spans the terminals. All the known algorithms for this problem which improve on trivial O(1.62 n )-time enumeration are based on dynamic programming, and require exponential space. Motivated by the fact that exponential-space algorithms are typically impractical, in this paper we address the problem of designing faster polynomial-space algorithms. Our first contribution is a simple O((27/4) k n O(logk))-time polynomial-space algorithm for the problem. This algorithm is based on a variant of the classical tree-separator theorem: every Steiner tree has a node whose removal partitions the tree in two forests, containing at most 2k/3 terminals each. Exploiting separators of logarithmic size which evenly partition the terminals, we are able to reduce the running time to $O(4^{k}n^{O(\log^{2} k)})$ . This improves on trivial enumeration for roughly k<n/3, which covers most of the cases of practical interest. Combining the latter algorithm (for small k) with trivial enumeration (for large k) we obtain a O(1.59 n )-time polynomial-space algorithm for the weighted Steiner tree problem. As a second contribution of this paper, we present a O(1.55 n )-time polynomial-space algorithm for the cardinality version of the problem, where all edge weights are one. This result is based on a improved branching strategy. The refined branching is based on a charging mechanism which shows that, for large values of k, convenient local configurations of terminals and non-terminals exist. The analysis of the algorithm relies on the Measure & Conquer approach: the non-standard measure used here is a linear combination of the number of nodes and number of non-terminals. Using a recent result in Nederlof (International colloquium on automata, languages and programming (ICALP), pp. 713–725, 2009), the running time can be reduced to O(1.36 n ). The previous best algorithm for the cardinality case runs in O(1.42 n ) time and exponential space.  相似文献   

10.
We study the k-level uncapacitated facility location problem (k-level UFL) in which clients need to be connected with paths crossing open facilities of k types (levels). In this paper we first propose an approximation algorithm that for any constant k, in polynomial time, delivers solutions of cost at most α k times OPT, where α k is an increasing function of k, with \(\lim _{k\to \infty } \alpha _{k} = 3\). Our algorithm rounds a fractional solution to an extended LP formulation of the problem. The rounding builds upon the technique of iteratively rounding fractional solutions on trees (Garg, Konjevod, and Ravi SODA’98) originally used for the group Steiner tree problem. We improve the approximation ratio for k-level UFL for all k ≥ 3, in particular we obtain the ratio equal 2.02, 2.14, and 2.24 for k = 3,4, and 5.  相似文献   

11.
Ak-extremal point set is a point set on the boundary of ak-sided rectilinear convex hull. Given ak-extremal point set of sizen, we present an algorithm that computes a rectilinear Steiner minimal tree in timeO(k 4 n). For constantk, this algorithm runs inO(n) time and is asymptotically optimal and, for arbitraryk, the algorithm is the fastest known for this problem.  相似文献   

12.
A k-core Ck of a tree T is subtree with exactly k leaves for k?nl, where nl the number of leaves in T, and minimizes the sum of the distances of all nodes from Ck. In this paper first we propose a distributed algorithm for constructing a rooted spanning tree of a dynamic graph such that root of the tree is located near the center of the graph. Then we provide a distributed algorithm for finding k-core of that spanning tree. The spanning tree is constructed in two stages. In the first stage, a forest of trees is generated. In the next stage these trees are connected to form a single rooted tree. An interesting aspect of the first stage of proposed spanning algorithm is that it implicitly constructs the (convex) hull of those nodes which are not already included in the spanning forest. The process is repeated till all non root nodes of the graph have chosen a unique parent. We implemented the algorithms for finding spanning tree and its k-core. A core can be quite useful for routing messages in a dynamic network consisting of a set of mobile devices.  相似文献   

13.
Every rectilinear Steiner tree problem admits an optimal tree T * which is composed of tree stars. Moreover, the currently fastest algorithms for the rectilinear Steiner tree problem proceed by composing an optimum tree T * from tree star components in the cheapest way. The efficiency of such algorithms depends heavily on the number of tree stars (candidate components). Fößmeier and Kaufmann (Algorithmica 26, 68–99, 2000) showed that any problem instance with k terminals has a number of tree stars in between 1.32 k and 1.38 k (modulo polynomial factors) in the worst case. We determine the exact bound O *(ρ k ) where ρ≈1.357 and mention some consequences of this result.  相似文献   

14.
In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {u e eE} and edge-costs {c e eE}, source-sink pair s, tV, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (AB, E) and an integer k > 0. The goal is to find a node subset S ? AB of minimum size |S| such G has k pairwise edge-disjoint paths between SA and SB. We give an \(O(\sqrt {k\log k})\) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {b v : vV}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+?? n approximation scheme for it using Group Steiner Tree techniques.  相似文献   

15.
We analyze a sorting problem where for every element there is a hard upper bound on the overall number of lost comparisons: Given are n elements and n non-negative integers a1,…,an. The goal is to sort these n elements by pairwise comparisons, subject to the condition that the kth element must not be the loser (= smaller element) in more than ak of its comparisons against the other elements.We completely characterize the sequences a1,…,an for which this sorting problem can be solved.  相似文献   

16.
Let X and Y be two strings of lengths n and m, respectively, and k and l, respectively, be the numbers of runs in their corresponding run-length encoded forms. We propose a simple algorithm for computing the longest common subsequence of two given strings X and Y in O(kl+min{p1,p2}) time, where p1 and p2 denote the numbers of elements in the bottom and right boundaries of the matched blocks, respectively. It improves the previously known time bound O(min{nl,km}) and outperforms the time bounds O(kllogkl) or O((k+l+q)log(k+l+q)) for some cases, where q denotes the number of matched blocks.  相似文献   

17.
We present new primal–dual algorithms for several network design problems. The problems considered are the generalized Steiner tree problem (GST), the directed Steiner tree problem (DST), and the set cover problem (SC) which is a subcase of DST. All our problems are NP-hard; so we are interested in their approximation algorithms. First, we give an algorithm for DST which is based on the traditional approach of designing primal–dual approximation algorithms. We show that the approximation factor of the algorithm is k, where k is the number of terminals, in the case when the problem is restricted to quasi-bipartite graphs. We also give pathologically bad examples for the algorithm performance. To overcome the problems exposed by the bad examples, we design a new framework for primal–dual algorithms which can be applied to all of our problems. The main feature of the new approach is that, unlike the traditional primal–dual algorithms, it keeps the dual solution in the interior of the dual feasible region. The new approach allows us to avoid including too many arcs in the solution, and thus achieves a smaller-cost solution. Our computational results show that the interior-point version of the primal–dual most of the time performs better than the original primal–dual method.  相似文献   

18.
We investigate a practical variant of the well-known graph Steiner tree problem. In this variant, every target vertex is required to be a leaf vertex in the solution Steiner tree. We present hardness results for this variant as well as a polynomial time approximation algorithm with performance ratio ρ+2, where ρ is the best-known approximation ratio for the graph Steiner tree problem.  相似文献   

19.
We study the problem of packing element-disjoint Steiner trees in graphs. We are given a graph and a designated subset of terminal nodes, and the goal is to find a maximum cardinality set of element-disjoint trees such that each tree contains every terminal node. An element means a non-terminal node or an edge. (Thus, each non-terminal node and each edge must be in at most one of the trees.) We show that the problem is APX-hard when there are only three terminal nodes, thus answering an open question. Our main focus is on the special case when the graph is planar. We show that the problem of finding two element-disjoint Steiner trees in a planar graph is NP-hard. Similarly, the problem of finding two edge-disjoint Steiner trees in a planar graph is NP-hard. We design an algorithm for planar graphs that achieves an approximation guarantee close to 2. In fact, given a planar graph that is k element-connected on the terminals (k is an upper bound on the number of element-disjoint Steiner trees), the algorithm returns $\lfloor\frac{k}{2} \rfloor-1$ element-disjoint Steiner trees. Using this algorithm, we get an approximation algorithm for the edge-disjoint version of the problem on planar graphs that improves on the previous approximation guarantees. We also show that the natural LP relaxation of the planar problem has an integrality ratio approaching?2.  相似文献   

20.
We study the quantity p(n, k, t1, t2) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t1, t2]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n, k, t1, t2) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号