首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
以LiNO_3、Ni(NO_3)_2·6 H_2O、Co(CH_3COO)_2·4 H_2O和Mn(CH_3COO)_2·4 H_2O为原料,用燃烧法制备了富锂层状锂离子电池正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和不同La掺杂量的正极材料Li[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0,0.01,0.03,0.05)。对制备的样品进行了XRD、S EM、EDS、电池充放电循环、EIS等表征和测试,进一步分析了掺La量对该富锂正极材料结构、形貌及电化学性能的影响。实验结果表明,掺杂前后的四种材料都具有典型的层状α-Na FeO_2结构,说明掺杂后并未改变材料的层状结构;在2.0~4.7 V充放电,当电流为0.1 C(1 C=200 mA/g)时,制备的正极材料Li-[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0.03)具有最高的首次充放电比容量,分别为250.51和179.45 mAh/g,其首次库仑效率从Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的63.5%提高到71.6%,以0.5 C循环50次,放电比容量保持在136.05 mAh/g。  相似文献   

2.
采用化学沉淀法对共沉淀法制备的富锂锰基正极材料Li[Li_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2进行Fe_2O_3表面包覆改性。对所制备的材料进行X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、透射电子显微镜法(TEM)、X射线光电子能谱法(XPS)和电化学分析等测试和表征,分析Fe_2O_3包覆对富锂锰基正极材料的结构、形貌和电化学性能的影响。结果表明,经Fe_2O_3包覆的正极材料都具有典型的α-NaFeO_2层状结构,少许层状结构转变为尖晶石结构;Fe_2O_3包覆提高了材料的首次库仑效率和循环稳定性,Fe_2O_3包覆量质量分数为7%的Li[Li_(0.2)Ni_(0.13)Co_(0.13)Mn_(0.54)]O_2呈现出的电化学性能最好,1 C下循环50次之后,容量保持率达90.16%。同时,交流阻抗结果表明Fe_2O_3包覆可有效减小材料的电荷转移阻抗并提高锂离子扩散系数。  相似文献   

3.
采用碳酸盐共沉淀法制备了层状结构的富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2和Li_(1.2)Ni_(0.11)Co_(0.11)Mn_(0.53)Cu_(0.05)O_2,通过X射线衍射、扫描电镜、透射电镜、X射线光电子能谱、拉曼光谱分析、充放电测试分析该合成材料的晶体结构、形貌特征、元素组成、能谱分析和电化学性能。经过Cu2+掺杂改性后的富锂锰基正极材料晶体结构更稳定、材料表面更光滑、颗粒分布更均匀、电化学性能更好,并且提高了材料的首周期充放电效率和倍率性能,在0.1 C下循环50次后的容量保持率为95.2%,具有良好的循环寿命。  相似文献   

4.
采用新颖的一步共沉淀法合成富锂锰基Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学测试对合成材料的晶体结构、形貌及电化学性能进行了测试和表征。结果表明,所制备Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2正极材料具有较好的多面体形貌,材料颗粒粒径小于500 nm。在2.0~4.8 V充放电区间内,在18 m A/g进行充放电,所制备材料的首次放电比容量达到209.0 m Ah/g,循环50次后容量保持率为87.7%。  相似文献   

5.
吴汉杰  梁兴华 《电源技术》2017,(11):1520-1521,1540
采用高温固相合成法制备锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0,0.01,0.02,0.03),其中合成的锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0.02)的粒径分布均匀、结晶程度极高和结构稳定性很好,在不同倍率0.1C、0.2 C、0.5 C、1 C和2 C下的放电比容量分别达到332.11、308.36、271.06、191.56、113.92 m Ah/g,并在0.1 C下循环50次后的放电比容量维持率为97%,所以少量Cr3+的掺杂对正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的充放电比容量、倍率特性和循环稳定性等电化学性能更好。  相似文献   

6.
以LiAc和Li2CO3为锂源,使用水热辅助草酸盐共沉淀法制备出富锂锰基正极材料Li_(1.2)Co_(0.13)Ni_(0.13)Mn_(0.54)O_2。采用X射线衍射分析(XRD)、扫描电子显微镜(SEM)、交流阻抗法(EIS)和恒流充放电测试对材料的结构,形貌和电化学性能进行表征。研究表明,以LiAc为锂源制备的材料在20 mA/g、2.0~4.8 V电位区间内比容量最高达265 mAh/g,首圈效率达到79.3%,而使用Li2CO3为锂源制备的材料拥有较好的循环性能,在0.5C和1.0C下经过50圈循环后比容量仍有192和183 mAh/g。  相似文献   

7.
芦敏  韩恩山  朱令之  张广泉 《电池》2016,(4):193-196
通过共沉淀法合成了掺杂Fe元素的锂离子电池正极材料Li[Ni_(1/3)Co_((1-x)/3)Mn_(1/3)Fe_(x/3)]O_2(x=0、0.1、0.3、0.5、0.7和0.9)。用循环伏安、电化学阻抗谱(EIS)和恒流充放电等方法,研究铁、钴元素含量对材料电化学性能的影响。与三元材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2相比,少量Fe掺杂(x=0.1)的Li[Ni_(1/3)Co_(0.9/3)Mn_(1/3)Fe_(0.1/3)]O_2比容量更高,循环性能更好。以0.1 C在2.4~4.5 V恒流充放电,首次、第30次循环的放电比容量分别为168.2 mAh/g、139.1 mAh/g,容量保持率为86.02%。  相似文献   

8.
刘蒙蒙  李丹  李雅迪  张辉 《电源技术》2016,(12):2305-2308
采用碳酸盐共沉淀法合成了均相Li_(1.4)[Ni_(0.15)Co_(0.15)Mn_(0.7)]O_(2.475)和{[Ni_(1/6)Co_(1/6)Mn_(4/6)]0.7core[Ni_(0.14)Co_(0.14)Mn_(0.72)]0.1shel 1[Ni_(0.115)Co_(0.115)Mn_(0.77)]_(0.1) shel 2[Ni_(0.09)Co_(0.09)Mn_(0.82)]_(0.1shel3)}CO_3多级核壳结构锂离子电池富锂正极材料。通过X射线粉末衍射分析(XRD)、扫描电镜测试(SEM)、粒度分析和电化学性能测试对所得样品的结构、形貌、粒度和电化学性能进行了表征。XRD结果表明,合成的均相及多级核壳材料均为层状结构;SEM测试表明,两种材料均为球形形貌;电化学性能测试表明,在室温下,2.0~4.8 V电压范围内,以20 m A/g的电流充放电,核壳材料的电化学性能优于均相材料。  相似文献   

9.
用氢氧化物共沉淀法结合固相反应合成锂离子电池正极材料Li_(1.167)Ni_(0.4-x)Mn_(0.383)Co_(0.05)Ti_xO_2(x=0、0.02、0.04、0.06和0.08)。通过XRD、SEM、电感耦合等离子体原子发射光谱(ICP-AES)和电化学性能测试,考察Ti掺杂量x对产物晶体结构和电化学性能的影响。Ti掺杂可提高材料的循环性能,Li_(1.167)Ni_(0.36)Mn_(0.383)Co_(0.05)Ti_(0.04)O_2材料具有最优的电化学性能,以0.1 C在2.0~4.8 V循环,首次放电比容量为186.6 m Ah/g,循环10次的容量保持率为99.4%。  相似文献   

10.
采用共沉淀法制备了Se掺杂的Li_(1.2)[Mn_(0.7)Ni_(0.2)Co_(0.1)]_(0.8-x)Se_xO_2正极材料,研究了Se含量对锂电池正极材料显微组织和电化学性能的影响,并分析了Se的作用机理。结果表明,Li_(1.2)[Mn_(0.7)Ni_(0.2)Co_(0.1)]_(0.8-x)Se_xO_2正极材料具有良好的层状结构,Se掺杂有助于增强超晶格结构的稳定性并抑制层状相向尖晶石相的转变,但当Se掺杂量达到0.21时,正极材料中还出现了Li2S e O4杂相峰;Se掺杂正极材料的库仑效率都高于未掺杂的LMNC试样,且随着Se掺杂量增加正极材料的库仑效率和放电比容量呈先增加而后减小特征,LMNC-Se0.14正极材料具有最大的库仑效率、最大的放电比容量以及优良的倍率性能。LMNC和LMNC-Se0.14正极材料在0.1 C下进行100次循环后的容量保持率分别为81%和94%,表明掺杂Se的LMNC-Se0.14试样具有更好的循环性能。  相似文献   

11.
分别采用硝酸铝[Al(NO_3)_3]、异丙醇铝(C_9H_(21)AlO_3)及纳米氧化铝(nano-Al_2O_3)为原料,通过不同方法对富锂层状氧化物正极材料Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2进行包覆改性,研究了不同铝源为原材料进行Al_2O_3包覆对Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2的结构和电化学性能的影响。采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电化学测试等方法来表征包覆前后Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2材料的表面形貌和电化学性能。研究结果表明,Al(NO_3)_3为铝源的包覆提高了电池的首次比容量、循环性能及倍率性能,以C_9H_(21)AlO_3为铝源的包覆层对电池的循环性能有比较好的提升。  相似文献   

12.
以氢氧化钠为沉淀剂,氨水为络合剂,通过氢氧化物共沉淀法制得前驱体,然后高温煅烧,合成锂离子电池正极材料Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(1-x)Mg_xO_2(x=0、0.01、0.02、0.03和0.04)。通过XRD、循环伏安、电化学阻抗谱(EIS)和恒流充放电等测试,研究Mg掺杂对材料性能的影响。适量的Mg掺杂可降低材料阳离子混排度,提高材料的循环性能及倍率性能。Li(Ni_(0.6)Co_(0.15)Mn_(0.25))_(0.98)Mg_(0.02)O_2的电化学性能较好,以0.1 C在2.7~4.3 V循环,首次放电比容量高达190.9 mAh/g;1.0 C循环30次的容量保持率为90.07%。  相似文献   

13.
研究了不同预循环电压对富锂锰正极材料Li_(1.13)Mn_(0.54)Ni_(0.27)Al_(0.06)O_2电化学性能的影响,重点考察了不可逆容量。电化学测试数据表明:采用上截止电压为4.4~4.6 V进行预循环可使初始不可逆容量降低一半;采用阶梯电压预循环制度可有效提高材料电化学性能,初始不可逆比容量从252 mAh/g降低至98 mAh/g,容量保持率达到94.4%,且在10 C倍率下放电比容量依然保持在81 mAh/g;富锂锰正极材料的初始不可逆容量主要来自三个方面:SEI膜的形成、Li_2MnO_3的活化和电解液分解。  相似文献   

14.
周春仙  廖达前  郭忻  习小明 《电池》2016,(5):263-266
采用高温固相法合成Li_(1+x)[Ni_(0.35)Mn_(0.65)]O_2(x=0.35、0.40、0.45和0.50)富锂锰基正极材料,进行XRD、SEM、电化学阻抗谱(EIS)分析和电化学性能测试。所得材料具有α-NaFeO_2层状结构,一次颗粒为类球形,平均粒径约为500 nm,最佳x值为0.45。x=0.45的材料于25℃时在2.0~4.8 V充放电,0.05 C首次放电比容量和首次循环的库仑效率分别为227.7 m Ah/g和71.7%,1.00 C最高放电比容量为182.6 m Ah/g。EIS测试表明:材料组装的电池的电荷转移阻抗较低。  相似文献   

15.
富锂材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zr_xO_2(x=0,0.02,0.05,0.1)是采用高温固相法合成,研究中采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶红外吸收光谱(FTIR)及电化学方法等手段进行了表征。实验结果表明,随着Zr含量增加,材料的晶胞参数发生较大变化,Zr的掺杂抑制了Li1.2Ni0.13Co0.13Mn0.54O2高温合成时Mn3+的产生,有利于锂离子的可逆脱嵌,所合成富锂材料的粒径分布均匀,结晶性较佳。此外,电特性测试结果表明,Li1.2Ni0.13Co0.13Mn0.49Zr0.05O2富锂材料具有较佳的电性能,0.1 C下放电比容量达366 m Ah/g,循环100次后放电比容量保持率为96%。  相似文献   

16.
通过碳酸盐共沉淀法和固相烧结法合成了锂离子电池正极材料Li[Ni_(0.56)Co_(0.19)Mn_(0.24)](1-x)Mg_xAl_(0.01)O_2(x=0,0.025,0.05和0.075)。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)和电化学性能测试,考察了Mg~(2+)掺杂量对产物结构、形貌和电化学性能的影响。结果表明:适量Mg2+掺杂不会改变LiNi_(0.56)Co_(0.19)Mn_(0.24)Al_(0.01)O_2样品的α-NaFeO_2层状结构,并且可以提高材料在大倍率下的循环性能,LiNi_(0.546)Co_(0.185)Mn0.234Mg_(0.025)Al_(0.01)O_2具有最优的电化学性能,该样品在0.1 C下首次放电比容量为181.0 mAh/g,首次库仑效率为83.7%,在1 C下首次放电比容量为122.3 mAh/g,经过30次循环后容量保持率为98.0%。  相似文献   

17.
用溶胶-凝胶法合成锂离子电池用富锂正极材料Li[Li_(0.2)Ni_(0.15)Mn_(0.55)Co_(0.1)]O_2,通过XRD、SEM、电感耦合等离子体发射光谱(ICP-OES)和电化学性能测试考察煅烧温度对合成材料结构和性能的影响。900℃下制备的材料具有典型的α-Na Fe O2层状结构、较好的晶型结构及良好的电化学性能。在2.0~4.8 V充放电,20℃下的0.10 C首次放电比容量为235.4 m Ah/g,库仑效率为78.5%;依次以0.10 C、0.20 C、0.50 C、0.75 C和1.00 C循环10次,再以0.20 C放电,首次1.00 C放电比容量为149.7 m Ah/g,最后一次0.20 C放电比容量为首次0.10 C放电比容量的85.9%。  相似文献   

18.
对国内主流三元材料Li(Ni_(0.5)Co_(0.2)Mn_(0.3))O_2(NCM523)的理化性能和电化学性能进行了测试。通过对不同厂商正极材料物化性能的对比,总结了材料的特征及其对电化学性能的影响。结果发现,通过Mg、Al掺杂的产品不一定具有优异的性能;pH值和残留碱含量在很低的差距范围内对电化学性能影响较小。  相似文献   

19.
将通过化学共沉淀法合成的Ni_(0.7)Co_(0.1)Mn_(0.2)(OH)_2三元前驱体与锂源LiOH·H_2O混合均匀,用高温固相反应法合成LiNi_(0.7)Co_(0.1)Mn_(0.2)O_2三元正极材料。采用XRD、SEM、恒电流充放电电池测试系统和电化学工作站对高温烧结合成的三元正极材料的晶体结构、颗粒形貌和电化学性能进行研究。结果表明,在850℃下高温煅烧合成的LiNi0.7Co0.1Mn0.2O2材料具有最优的组织结构、微观形貌和电化学性能。0.2 C倍率下首次放电比容量达到191.5 mAh/g,1.0 C倍率下循环50圈后的放电比容量为178.3 mAh/g,容量保持率达96.5%。  相似文献   

20.
采用氢氧化物共沉淀-高温固相法合成了Li_(1.05)Ni_(0.5)Mn_(0.45)O_2正极材料;利用X射线衍射光谱法(XRD)和扫描电子显微镜法(SEM)分别表征材料晶体结构和形貌,并采用恒流充放电和电化学阻抗(EIS)研究了材料的电化学性能。结果表明,840℃下保温15 h合成的正极材料,室温条件下以0.2 C倍率在2.75~4.6 V电压范围,首次放电比容量为181.74 m Ah/g,循环50次后容量保持率为93.74%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号