首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2017,43(16):13364-13370
In this study, in order to determine the effect of SiC nanoparticles on tribological properties of nanostructured copper, the dry sliding wear and friction behaviors of nanostructured copper and copper reinforced with silicon carbide nanoparticles, produced by high energy ball milling and spark plasma sintering, were investigated by using an oscillating friction and wear tester under different normal loads. To determine the dominant wear mechanism, the worn surfaces and obtained debris after wear tests were analyzed by scanning electron microscope (SEM). The results showed that the addition of 4 vol% silicon carbide to copper matrix reduced the wear track depth and the coefficient of friction. Investigation of the worn surfaces revealed that SiC nanoparticles on the top of worn surface decreases the plastic deformation in subsurface region and alleviate severe wear. Lower plastic deformation during dry sliding wear test was attributed to high hardness of the nanocomposite that has been resulted from grain growth inhibiting and reinforcing effects of the nanoparticles. Plastic deformation and delamination were determined as major wear mechanisms in both materials.  相似文献   

2.
The tribological behaviour of silicon nitride (Si3N4) ceramics is investigated using a two-step strategy. A set of ceramic composites containing silicon carbide nanoparticles (SiCn) is developed and, subsequently, graphene-based fillers are added to the Si3N4/SiC composite with the best tribological performance. The friction coefficient and the wear rate of Si3N4 are reduced up to 22 % and 40 %, respectively, when a 10 vol.% of SiCn is incorporated into the ceramic matrix due to its improved mechanical response. Si3N4/SiC composites containing 11 vol.% of graphene nanoplatelets (GNPs) or reduced graphene oxide sheets (rGOs) are analysed under isooctane lubrication and dry testing. rGOs composite leads to an important decrease of the friction coefficient (50 %) under lubricated conditions, and an enhancement of the wear resistance (44 %) under dry sliding tests, as compared to the reference Si3N4/SiC. The best performance of rGOs composite is due to the nature of the lubricating tribofilm and its excellent toughness.  相似文献   

3.
Additive manufacturing (AM) techniques are promising manufacturing methods for the production of complex parts in small series. In this work, laser sintering (LS) was used to fabricate reaction bonded silicon carbide (RBSC) parts. First, silicon carbide (SiC) and silicon (Si) powders were mixed in order to obtain a homogeneous powder. This powder mixture was subsequently laser sintered, where the Si melts and re-solidifies to bind the primary SiC particles. Afterwards, these SiSiC preforms were impregnated with a phenolic resin. This phenolic resin was pyrolysed yielding porous carbon, which was transformed into secondary reaction formed SiC when the preforms were infiltrated with molten silicon in the final step. This resulted in fully dense RBSC parts with up to 84?vol% SiC. The optimized SiSiC combined a Vickers hardness of 2045?HV, an electrical conductivity of 5.3?×?103?S/m, a Young's modulus of 285?GPa and a 4-point bending strength of 162?MPa.  相似文献   

4.
A monolithic SiC ceramic and two SiC–C composite ceramics containing 10 and 20 vol% graphite were fully densified with Al4C3 and B4C as additives. The tribological properties of these materials were evaluated by sliding against sintered silicon carbide under dry conditions using two tribometers, block-on-ring and pin-on-disk, where wear occurred under low and high contact stresses, respectively. For all three materials, under low stress, worn surfaces were smooth and wear processes were dominated by tribochemical reaction; under high stress, worn surfaces were rough and wear processes were dominated by fracture and three-body abrasion. A lubricating effect of the graphite particles in the SiC–C composites was observed in all sliding tests. However, while the addition of graphite could concurrently result in a reduction in friction and an increase in wear resistance in the block-on-ring tests, the addition of graphite led to sharply enhanced wear rates despite the lowered coefficients of friction in the pin-on-disk tests. The cause for that difference was attributed to the effect of both the hardness of the materials and the contact stresses.  相似文献   

5.
Al2O3/SiC composites containing different volume fractions (3, 5, 10, 15, and 20 vol%) of SiC particles were produced by conventional mixing of alumina and silicon carbide powders, followed by hot pressing at 1740 °C for 1 h under the pressure of 30 MPa in the atmosphere of Ar. The influence of the volume fraction and size of SiC particles (two different powders with the mean size of SiC particles 40 and 200 nm were used), and final microstructure on mechanical properties and dry sliding wear behaviour in ball-on-disc arrangement were evaluated. The properties of the composites were related to a monolithic Al2O3 reference. Microstructure of the composites was significantly affected by the volume fraction of added SiC, with the mean size of alumina matrix grains decreasing with increasing content of SiC particles. The addition of SiC moderately improved the Vickers hardness. Fracture toughness was lower with respect to monolithic Al2O3, irrespective of the volume fraction and size of SiC particles. Al2O3/SiC nanocomposites conferred significant benefits in terms of wear behaviour under the conditions of mild dry sliding wear. Wear resistance of the alumina reference was poor, especially at the applied load of 50 N. The wear rates of composites markedly decreased with increasing volume fraction of SiC. Wear of the composites was also influenced by the material of counterparts, especially their hardness, with softer counterparts resulting in lower wear rates. All composites wore by a combination of grain pull-out with plastic deformation associated with grooving and small contribution of mechanical wear (micro-fracture). No influence of SiC particle size on wear rate or mechanism of wear was observed in the materials with identical volume fractions of SiC.  相似文献   

6.
鲁张祥  宋歌 《中国塑料》2021,35(6):20-25
为了研究多种只由非金属混合组成的增强纤维对树脂基摩擦材料摩擦磨损性能的影响,以腰果壳油改性酚醛树脂(CNSL)为基体,按不同比例加入玻璃纤维、碳纤维和芳纶浆粕纤维,采用热压烧结技术制备摩擦材料。利用与高速钢配副的环块摩擦磨损试验机研究摩擦材料在不同制动工况下的摩擦磨损性能,并利用扫描电子显微镜分析了材料的磨损形貌。结果表明,玻璃纤维、碳纤维、芳纶浆粕纤维的体积比分别为4 %、10 %、3 %所组成的摩擦材料(P3)的硬度比其体积比分别是7 %、4 %、6 %的摩擦材料(P1)和其体积比分别是1 %、7 %、9 %的摩擦材料(P2)的硬度大;在不同的制动条件下,样品P1的摩擦因数最大,P3次之,P2最小,样品P3和P2的相对磨损率相似且比较稳定,约为样品P1的1~1/5,样品P3表现出最佳的摩擦学性能;摩擦材料和对偶材料的磨损形式主要为磨粒磨损。  相似文献   

7.
The tribological behavior of ultra-high temperature ceramic matrix composites (UHTCMCs) was investigated to understand these materials in friction applications. Samples consisting of pitch-based randomly orientated chopped carbon fiber (CF) reinforced ZrB2-10 vol% SiC were prepared (ZS). The tribological behavior was tested on a self-designed dynamometer, coupling the UHTCMC pads with either carbon fiber reinforced carbon−silicon carbide (C/C-SiC) or steel disks, with two applied contact pressures (1 and 3 MPa) and the surface microstructures were analyzed to unravel the wear mechanisms. Even at high mechanical stresses, tests against the C/C-SiC disk showed stable braking performance and wear. The abraded material from a steel disk formed a stable friction film by fusing together harder pad particles with abraded steel, which reduced wear and stabilized the braking performance. The high values of coefficient of friction obtained (0.5–0.7), their stability during the braking and the acceptable wear rate make these materials appealing for automotive brake applications.  相似文献   

8.
The thermal stability and tribological properties of cyanate ester (CE) composites filled with Zirconium boride (ZrB2) particles were investigated by experimental and numerical simulation. The results of thermogravimetric analysis and differential scanning calorimetry showed that the thermal stability of composites was improved by introduction of ZrB2 particles. The tribological properties of composites including friction coefficient and wear rate measured by pin‐on‐disk friction and wear tester were enhanced. Friction coefficient and wear rate of composites were decreased significantly with an increase of ZrB2 particles content under dry and oil sliding conditions. The 5 wt% ZrB2 particles reinforced CE resin composite presented optimal thermal stability and tribological performance due to good dispersion of ZrB2 particles. The worn surfaces of composites were observed by scanning electron microscopy to explore wear mechanism, indicating that the dominant wear mechanism of composites was transformed from adhesive wear to abrasive wear after incorporation of ZrB2 particles. Finite element model was established to study the distribution of friction stress. The results revealed that filling ZrB2 particles in the friction process of composites could bear more friction stress than CE resin matrix, which further illustrated that abrasive wear is main wear mechanism of ZrB2/CE resin composites. POLYM. ENG. SCI., 59:602–607, 2019. © 2018 Society of Plastics Engineers  相似文献   

9.
Polymer matrix composites are a promising candidate in tribological applications due to possibility of tailoring their properties with special fillers. The comparative performance of Glass–Epoxy (G‐E) composites with influence of synthetic fillers such as graphite (Gr) and silicon carbide (SiC) and biobased natural filler jatropha oil cake (JOC) was experimentally investigated. All the composites were fabricated using vacuum‐assisted resin infusion (VARI) technique. The mechanical properties were studied in accordance with ASTM standards. The three‐body abrasive wear studies were carried out with rubber wheel abrasion tester as per ASTM‐G65 standard. Two different loads namely 22 N and 32 N with different abrading distances viz, 135, 270, 405, and 540 m are test parameters. The results reveal that addition of JOC in G‐E composites has significant influence on wear under varied abrading distance/load. Further, it was found that SiC filled G‐E composites exhibited better wear resistance compared to Gr/JOC filled G‐E composites. The operating wear mechanisms have been studied by using scanning electron microscopy. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Plasma treatment was used to improve the surface roughness of copper foil. The copper-clad laminates reinforced with carbon fiber, boron nitride (BN), or boron carbide (B4C), and epoxy resin were prepared by hot pressing. The effect of BN or B4C content on the physical properties and tribological properties of copper-clad laminates reinforced with carbon fiber and epoxy resin were studied. The resulting copper-clad laminate exhibited desirable properties, such as dielectric constant, peel strength, oxygen index, and arc resistance, which were influenced by the concentration of BN or B4C particles. Additionally, the wear and friction properties of the laminate were evaluated, revealing the effects of load, sliding speed, and particle content on weight loss, specific wear rate, and coefficient of friction. SEM analysis of worn surfaces provided insight into the stages of wear, highlighting the importance of an oxide layer in reducing wear and protecting the copper surface.  相似文献   

11.
《Ceramics International》2017,43(5):4314-4323
In this paper, the tribological behaviors of 20 and 40 vol% in situ TiB2 reinforced TiAl-based composites sliding against SiC balls were investigated in artificial sea water, and TiAl alloy was also studied as a comparison. The results showed that the TiAl-TiB2 composites are lubricated in artificial sea water and TiB2 is effective to improve the wear resistance of the TiAl alloy. Also, it was found that the tribological behaviors have a dependency on the applied loads and sliding speeds. Worn surface morphologies and composition together with electrochemical behaviors of the materials were evaluated and related to the tribological behaviors.  相似文献   

12.
葛铁军  胡晓岐  王东奇 《塑料》2020,49(2):69-72,84
采用原位改性法合成腰果酚改性酚醛树脂,并与粒径不同的碳化硅(SiC)混合物复配制备了腰果酚改性酚醛树脂基耐磨复合材料。通过红外光谱证明成功合成了腰果酚改性酚醛树脂,且树脂符合磨具磨料用液体树脂的基本要求。扫描电镜SEM图及力学性能测试结果表明,与普通酚醛树脂相比,腰果酚改性酚醛树脂粘结Si C的能力更强,且偶联剂的加入能提高树脂与碳化硅之间的相容性。在腰果酚含量为15%时,固化剂含量为10%,偶联剂含量为2.5%时,改性酚醛树脂基复合材料的拉伸、弯曲等力学性均能达到最优。通过分析耐磨测试结果发现,二硫化钼的添加能有效降低复合材料的磨损率,提高腰果酚改性酚醛树脂基耐磨复合材料的耐磨性。  相似文献   

13.
SiC-B4C ceramic composites with different ratios of SiC to B4C were produced. The relative density, mechanical properties, initial surface characteristics, dry sliding tribological properties against SiC ball and worn surface characteristics of the SiC-B4C ceramics were studied. Results of dry sliding tribological tests showed that, 40 wt. % SiC-60 wt. % B4C ceramic composite had the best tribological properties in SiC-B4C ceramic composites. A relief structure with height difference of 10−30 nm between B4C grains and SiC grains is formed after dry sliding. This relief structure, on the one hand, can reduce real contact area on interface, decreasing adhesion effect, and on the other hand, can fix or trap the wear pieces formed on sliding interface during the dry sliding process, reducing the abrasive wear. However, there is a limit to the beneficial influence of decreased adhesion effect and reduced abrasive wear, and an optimum proportion of relief structure. Pores can also fix or trap some wear pieces, reducing the abrasive wear. Under the condition of strong bonding between SiC grains and B4C grains, the SiC-B4C ceramic composites with higher porosity can obtain better tribological properties. In addition, it is observed by AFM that the depth of scratch on B4C grains is shallower than that on SiC grains. Hence, it is demonstrated by micro scale measurement that the wear rate of B4C is lower than that of SiC in this study.  相似文献   

14.
Silicon carbide (SiC) nanoparticles with no surface treatment raise the viscosity of a vinyl ester resin much more intensely than micrometer‐size SiC particles. An effective dispersant generally causes a reduction in the resin viscosity attributed to its surface‐active properties and thereby increases the maximum fraction of particles that can be introduced. This article assesses the rheological behavior of SiC‐nanoparticle‐filled vinyl ester resin systems with the Bingham, power‐law, Herschel–Bulkley, and Casson models. The maximum particle loading corresponding to infinite viscosity has been determined to be a 0.1 volume fraction with the (1 ? ηr?1/2)–? dependence (where ηr is the relative viscosity and ? is the particle volume fraction). The optimum fractional weight percentage of the dispersants (wt % dispersant/wt % SiC) is around 40% for 30‐nm SiC nanoparticles, which is much higher than 1–3% for micrometer‐size particles. SiC nanoparticles at a concentration of 9.2 wt % (0.03 volume fraction) cause a fourfold increase in the resin viscosity. The addition of a dispersant at the optimum dosage lowers the viscosity of SiC/vinyl ester suspensions by 50%. The reduction in the viscosity is substantial to improve the processability of SiC/vinyl ester nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4365–4371, 2006  相似文献   

15.
The tribological behaviors of hybrid PTFE/Kevlar fabric composites filled with nano‐SiC and/or submicron‐WS2 fillers were studied. Scanning electron microscopy and energy‐dispersive X‐ray spectrometer were used for analysis of the worn surface, transfer film, and debris of the PTFE/Kevlar fabric composites. In addition, the wear volume loss of the composite was measured by means of a laser microscopic 3D and profile measurement apparatus. The results indicate that although both single fillers and hybrid fillers can reduce the wear rate of composites, but hybrid fillers filled composites could achieve the desired comprehensive tribological properties in dry sliding. The improved tribological performance of filled composites can be attributed to two aspects: the formation of a thin and tenacious transfer film on the counter‐surface, and the restrain the formation of larger debris. Tiny wear debris was easily trapped in the gap of a worn surface and can repair the damaged surface. In addition, the trapped debris could be considered as a secondary source of lubricant. POLYM. COMPOS., 37:2218–2226, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
The research presented in this paper aims to investigate the effectiveness of different surface roughness and lubrication conditions on the interfacial tribological properties between silicon carbide (SiC) and silicon nitride (Si3N4) ceramics, particularly for providing insight into the mechanisms of how graphene reduces the friction and wear rate. The worn groove topography and surface composition were characterised in detail with 3D laser measuring microscopy and X-ray photoelectron spectroscopy. The tribological test results on the UMT-TriboLab show that a smooth initial surface is more likely to obtain a low friction coefficient and wear rate under water lubrication. The proper initial surface roughness for SiC and Si3N4 ceramics is approximately Ra 10?nm, and it will be lower in an alcohol or graphene aqueous solution. A large load does not worsen the tribological behaviour of a Si3N4 ball sliding against a SiC disk, and it reduces the friction coefficient and wear rate. Among the five lubrication states of dry friction, dry graphene lubrication, water lubrication, graphene solution lubrication, and self-developed graphene lubrication, the self-developed graphene lubricant can exhibit an ultra-low friction coefficient of 0.009 and ultra-low wear rate of 1.69?×?10?7?mm3/N·m. The excellent tribological property of the graphene-coated ceramic surface helps the prepared lubricant to decrease the friction coefficient effectively. Furthermore, the graphene film can protect the SiC from being oxidised by water under the tribo-activated action, and therefore, lead to ultra-low wear rate under low friction condition. Alcohol improves the tribological property of the self-developed graphene lubricant, mainly because of the good wettability between graphene and ethanol. The self-developed graphene lubricant can be applied in water-lubricated ceramic bearings and motorised precision spindles.  相似文献   

17.
Semiconductor particles doped Al2O3 coatings were prepared by cathode plasma electrolytic deposition in Al(NO3)3 electrolyte dispersed with SiC micro- and nano-particles (average particle sizes of 0.5–1.7?µm and 40?nm respectively). The effects of the concentrations and particle sizes of the SiC on the microstructures and tribological performances of the composite coatings were studied. In comparison with the case of dispersing with SiC microparticles, the dispersion of SiC nanoparticles in the coatings was more uniform. When the concentration of SiC nanoparticles was 5?g/L, the surface roughness of the composite coating was reduced by 63%, compared with that of the unmodified coating. Friction results demonstrated that the addition of 5?g/L SiC nanoparticles reduced the friction coefficient from 0.60 to 0.38 and decreased the wear volume under dry friction. The current density and bath voltage were measured to analyze the effects of SiC particles on the deposition process. The results showed that the SiC particles could alter the electrical behavior of the coatings during the deposition process, weaken the bombardment of the plasma, and improve the structures of the coatings.  相似文献   

18.
The tribological performance of silicon carbide (SiC)/graphene nanoplatelets (GNPs) composites is analysed under oscillating sliding tests lubricated with isooctane, looking to explore their potential as components for gasoline direct injection (GDI) engines. High graphene filler contents (20?vol.% of GNPs) are required to substantially reduce the friction coefficient of SiC ceramics, attaining decreases on friction up to 30% independently of the applied load. For all materials and testing conditions a mild wear regime is evidenced. SiC/20?vol.% GNPs composite also enhances the wear resistance up to 35% at low load, but the addition of GNPs produces a deleterious effect as the load augments. The tribological behaviour depends on the formation and destabilization of a solid lubricant carbon-based tribofilm and strongly correlates with the mechanical properties of the tested materials.  相似文献   

19.
An investigation was made to evaluate the effect of the incorporation of jatropha oil cake (JOC) alone and in combination with silicon carbide (SiC) on the mechanical and tribological wear behaviour of glass fabric–epoxy (GE) composites. A vacuum-assisted resin transfer moulding (VARTM) technique was employed to obtain a series of GE composites containing different fillers viz., silicon carbide, jatropha oil cake and a mixture of SiC and JOC. The effect of different loads (22 and 32 N) and abrading distances from 135 to 540 m on the performance of the wear resistance of the composites were measured. The mechanical properties such as tensile behaviour and hardness of the composites were evaluated. A linear relationship was found between the wear volume loss and the abrading distances. The JOC filled GE composite exhibited a lower specific wear rate by 6 and 10% at 540 m abrading distance for a load of 22 and 32 N, respectively, as compared to that of unfilled GE composites. The worn surface features of unfilled and filled GE composites were examined using scanning electron microscopy (SEM).  相似文献   

20.
Hybrid Cu-SiC composites have been highly considered in order to achieve a combination of electrical and thermal properties along with high strength and wear resistance. However, limited investigations have ever been conducted over the effects of using hybrid (combination of nano and micro size) particles on the wear resistance behavior of these composites. Hence, in the present study, Cu-SiC nanocomposite with 4?vol% nanosize and 4?vol% microsize SiC, and Cu-SiC microcomposite with 8?vol% micro- SiC were fabricated through mechanical milling and hot pressing process. Results revealed the homogeneous dispersion of SiC particles in the matrix, high densification, and ultrafine-grain matrix for the samples. The hybrid nanocomposite showed higher wear resistance, lower friction coefficient and enhanced compressive strength in comparison to the microcomposite. The presence of hybrid particles caused a significant decrease of 61% in the matrix grain size, 53% decrease in the width of wear track, and 35% increase in the compressive strength compared to the nanostructured Cu sample. Investigation of the worn surfaces showed that delamination is the predominant wear mechanism in the Cu-SiC composites. Using hybrid SiC led to decreasing the formation of cracks and pits, and plastic deformation in the worn surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号