首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
State‐of‐the‐art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene‐based hybrid two‐dimensional nanostructures. Here, the chemically integrated inorganic‐graphene hybrid two‐dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic‐graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic‐graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene‐based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.  相似文献   

2.
Flexible energy‐storage devices are attracting increasing attention as they show unique promising advantages, such as flexibility, shape diversity, light weight, and so on; these properties enable applications in portable, flexible, and even wearable electronic devices, including soft electronic products, roll‐up displays, and wearable devices. Consequently, considerable effort has been made in recent years to fulfill the requirements of future flexible energy‐storage devices, and much progress has been witnessed. This review describes the most recent advances in flexible energy‐storage devices, including flexible lithium‐ion batteries and flexible supercapacitors. The latest successful examples in flexible lithium‐ion batteries and their technological innovations and challenges are reviewed first. This is followed by a detailed overview of the recent progress in flexible supercapacitors based on carbon materials and a number of composites and flexible micro‐supercapacitors. Some of the latest achievements regarding interesting integrated energy‐storage systems are also reviewed. Further research direction is also proposed to surpass existing technological bottle‐necks and realize idealized flexible energy‐storage devices.  相似文献   

3.
The development of pseudocapacitive materials for energy‐oriented applications has stimulated considerable interest in recent years due to their high energy‐storing capacity with high power outputs. Nevertheless, the utilization of nanosized active materials in batteries leads to fast redox kinetics due to the improved surface area and short diffusion pathways, which shifts their electrochemical signatures from battery‐like to the pseudocapacitive‐like behavior. As a result, it becomes challenging to distinguish “pseudocapacitive” and “battery” materials. Such misconceptions have further impacted on the final device configurations. This Review is an earnest effort to clarify the confusion between the battery and pseudocapacitive materials by providing their true meanings and correct performance metrics. A method to distinguish battery‐type and pseudocapacitive materials using the electrochemical signatures and quantitative kinetics analysis is outlined. Taking solid‐state supercapacitors (SSCs, only polymer gel electrolytes) as an example, the distinction between asymmetric and hybrid supercapacitors is discussed. The state‐of‐the‐art progress in the engineering of active materials is summarized, which will guide for the development of real‐pseudocapacitive energy storage systems.  相似文献   

4.
Currently, metal molybdates compounds can be prepared by several methods and are considered as prospective electrode materials in many fields because the metal ions possess the ability to exist in several oxidation states. These multiple oxidation states contribute to prolonging the discharge time, improving the energy density, and increasing the cycling stability. The high electrochemical performance of metal molybdates as electrochemical energy storage devices are discussed in this review. According to recent publications and research progress on relevant materials, the investigation of metal molybdate compounds are discussed via three main aspects: synthetic methods, material properties and measured electrochemical performance of these compounds as electrode materials. The recent progress in general metal molybdate nanomaterials for LIBs and supercapacitors are carefully presented here.  相似文献   

5.
2D materials have received tremendous scientific and engineering interests due to their remarkable properties and broad‐ranging applications such as energy storage and conversion, catalysis, biomedicine, electronics, and so forth. To further enhance their performance and endow them with new functions, 2D materials are proposed to hybridize with other nanostructured building blocks, resulting in hybrid nanostructures with various morphologies and structures. The properties and functions of these hybrid nanostructures depend strongly on the interfacial interactions between 2D materials and other building blocks. Covalent and coordination bonds are two strong interactions that hold high potential in constructing these robust hybrid nanostructures based on 2D materials. However, most 2D materials are chemically inert, posing problems for the covalent assembly with other building blocks. There are usually coordination atoms in most of 2D materials and their derivatives, thus coordination interaction as a strong interfacial interaction has attracted much attention. In this review, recent progress on the coordination‐driven hierarchical assembly based on 2D materials is summarized, focusing on the synthesis approaches, various architectures, and structure–property relationship. Furthermore, insights into the present challenges and future research directions are also presented.  相似文献   

6.
High‐energy storage devices are in demand for the rapid development of modern society. Until now, many kinds of energy storage devices, such as lithium‐ion batteries (LIBs), sodium‐ion batteries (NIBs), and so on, have been developed in the past 30 years. However, most of the commercially exploited and studied active electrode materials of these energy storage devices possess a single phase with low reversible capacity or unsatisfied cycle stability. Continuous and extensive research efforts are made to develop alternative materials with a higher specific energy density and long cycle life by element doping or surface modification. A novel strategy of forming composite‐structure electrode materials by introducing structure units has attracted great attention in recent years. Herein, based on previous publications on these composite‐structure materials, some important scientific points focusing on the design of composite‐structure materials for better electrochemical performances reveal the distinction of composite structures based on average and local structure analysis methods, and an understanding of the relationship between these interior composite structures and their electrochemical performances is discussed thoroughly. The lithiation/delithiation mechanism and the remaining challenges and perspectives for composite‐structure electrode materials are also elaborated.  相似文献   

7.
The miniaturization of power sources aimed at integration into micro‐ and nano‐electronic devices is a big challenge. To ensure the future development of fully autonomous on‐board systems, electrodes based on self‐supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self‐supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li‐ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self‐supported electrodes fabricated using template, lithography, anodization and self‐organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability.  相似文献   

8.
Nanostructured carbon is widely used in energy storage devices (e.g., Li‐ion and Li‐air batteries and supercapacitors). A new method is developed for the generation of carbon nanoflakes on various metal oxide nanostructures by combining atomic layer deposition (ALD) and glucose carbonization. Various metal oxide@nanoflake carbon (MO@f‐C) core‐branch nanostructures are obtained. For the mechanism, it is proposed that the ALD Al2O3 and glucose form a composite layer. Upon thermal annealing, the composite layer becomes fragmented and moves outward, accompanied by carbon deposition on the alumina skeleton. When tested as electrochemical supercapacitor electrode, the hierarchical MO@f‐C nanostructures exhibit better properties compared with the pristine metal oxides or the carbon coating without ALD. The enhancement can be ascribed to increased specific surface areas and electric conductivity due to the carbon flake coating. This peculiar carbon coating method with the unique hierarchical nanostructure may provide a new insight into the preparation of ‘oxides + carbon’ hybrid electrode materials for energy storage applications.  相似文献   

9.
Lithium-ion batteries (LIBs) are deemed as the most promising energy storage devices due to their high power density, excellent safety performance and superior cyclability. However, traditional carbon-based anodes are incapable of satisfying the ever-growing demand for high energy density owing to their low intrinsic theoretical capacity. Therefore, the research of post-carbon anodes (such as transition metal) for LIBs has exponentially increased. Among them, NiCo2O4 together with its composites have been widely studied by academic workers due to their high theoretical capacity and excellent electronic conductivity. In this review, the electrochemical reaction mechanism and recent progress including the synthetic method, various nanostructures and the strategies for improving performance of NiCo2O4 are summarized and discussed here. Specially, the hollow porous nanostructured NiCo2O4-based materials composed of 2D structures usually exhibit excellent capacity and stable cyclability. This review also offers some rational understandings and new thinking of the relationship between the synthetic method, morphologies, blending, current collector and electrochemical performance of NiCo2O4-based anodes. We have reason to believe that the integration of NiCo2O4 materials in these clean energy devices provides important chances to address challenges driven by increasing world energy demand.  相似文献   

10.
Due to their special structural characteristics, hollow structures grant fascinating physicochemical properties and widespread applications, especially in electrochemical energy storage and conversion. Recently, the research of Prussian blue (PB) and its analog (PBA) related nanomaterials has emerged and has drawn considerable attention because of their low cost, facile preparation, intrinsic open framework, and tunable composition. Here, the recent progress in the study of PB‐ and PBA‐based hollow structures for electrochemical energy storage and conversion are summarized and discussed. First, some remarkable examples in the synthesis of hollow structures from PB‐ and PBA‐based materials are illustrated in terms of the structural architectures, i.e., closed single‐shelled hollow structures, open hollow structures, and complex hollow structures. Thereafter, their applications as potential electrode materials for lithium‐/sodium‐ion batteries, hybrid supercapacitors, and electrocatalysis are demonstrated. Finally, the current achievements in this field together with the limits and urgent challenges are summarized. Some perspectives on the potential solutions and possible future trends are also provided.  相似文献   

11.
It has long been the goal to develop rechargeable batteries with low cost and long cycling life. Polyanionic compounds offer attractive advantages of robust frameworks, long-term stability, and cost-effectiveness, making them ideal candidates as electrode materials for grid-scale energy storage systems. In the past few years, various polyanionic electrodes have been synthesized and developed for sodium storage. Specifically, doping regulation including cation and anion doping has shown a great effect in tailoring the structures of polyanionic electrodes to achieve extraordinary electrochemical performance. In this review, recent progress in doping regulation in polyanionic compounds as electrode materials for sodium-ion batteries (SIBs) is summarized, and their underlying mechanisms in improving electrochemical properties are discussed. Moreover, challenges and prospects for the design of advanced polyanionic compounds for SIBs are put forward. It is anticipated that further versatile strategies in developing high-performance electrode materials for advanced energy storage devices can be inspired.  相似文献   

12.
2D materials have shown great potential as electrode materials that determine the performance of a range of electrochemical energy technologies. Among these, 2D copper-based materials, such as Cu–O, Cu–S, Cu–Se, Cu–N, and Cu–P, have attracted tremendous research interest, because of the combination of remarkable properties, such as low cost, excellent chemical stability, facile fabrication, and significant electrochemical properties. Herein, the recent advances in the emerging 2D copper-based materials are summarized. A brief summary of the crystal structures and synthetic methods is started, and innovative strategies for improving electrochemical performances of 2D copper-based materials are described in detail through defect engineering, heterostructure construction, and surface functionalization. Furthermore, their state-of-the-art applications in electrochemical energy storage including supercapacitors (SCs), alkali (Li, Na, and K)-ion batteries, multivalent metal (Mg and Al)-ion batteries, and hybrid Mg/Li-ion batteries are described. In addition, the electrocatalysis applications of 2D copper-based materials in metal–air batteries, water-splitting, and CO2 reduction reaction (CO2RR) are also discussed. This review also discusses the charge storage mechanisms of 2D copper-based materials by various advanced characterization techniques. The review with a perspective of the current challenges and research outlook of such 2D copper-based materials for high-performance energy storage and conversion applications is concluded.  相似文献   

13.
It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field.  相似文献   

14.
Recent advances and achievements in emerging Li‐X (X = O2, S, Se, Te, I2, Br2) batteries with promising cathode materials open up new opportunities for the development of high‐performance lithium‐ion battery alternatives. In this review, we focus on an overview of recent important progress in the design of advanced cathode materials and battery models for developing high‐performance Li‐X (X = O2, S, Se, Te, I2, Br2) batteries. We start with a brief introduction to explain why Li‐X batteries are important for future renewable energy devices. Then, we summarize the existing drawbacks, major progress and emerging challenges in the development of cathode materials for Li‐O2 (S) batteries. In terms of the emerging Li‐X (Se, Te, I2, Br2) batteries, we systematically summarize their advantages/disadvantages and recent progress. Specifically, we review the electrochemical performance of Li‐Se (Te) batteries using carbonate‐/ether‐based electrolytes, made with different electrode fabrication techniques, and of Li‐I2 (Br2) batteries with various cell designs (e.g., dual electrolyte, all‐organic electrolyte, with/without cathode‐flow mode, and fuel cell/solar cell integration). Finally, the perspective on and challenges for the development of cathode materials for the promising Li‐X (X = O2, S, Se, Te, I2, Br2) batteries is presented.  相似文献   

15.
在各种能源储存设备中,锂离子电池成为重要的首选储能器件,在便携电子设备、电动车、混合电动车及其它能源存储设备等方面都有广泛应用。如何提高锂离子电池用电极材料的锂离子储存性能,已经成为材料科学与工程领域的热点之一。利用导电基质构建纳米结构复合材料是提高锂离子储存性能的有效途径。简要介绍了碳基和金属基质纳米复合电极材料的研究进展,主要包括材料制备新方法、新工艺、锂离子电池改性及其发展趋势等内容。  相似文献   

16.
Hollow nanostructures offer promising potential for advanced energy storage and conversion applications. In the past decade, considerable research efforts have been devoted to the design and synthesis of hollow nanostructures with high complexity by manipulating their geometric morphology, chemical composition, and building block and interior architecture to boost their electrochemical performance, fulfilling the increasing global demand for renewable and sustainable energy sources. In this Review, we present a comprehensive overview of the synthesis and energy‐related applications of complex hollow nanostructures. After a brief classification, the design and synthesis of complex hollow nanostructures are described in detail, which include hierarchical hollow spheres, hierarchical tubular structures, hollow polyhedra, and multi‐shelled hollow structures, as well as their hybrids with nanocarbon materials. Thereafter, we discuss their niche applications as electrode materials for lithium‐ion batteries and hybrid supercapacitors, sulfur hosts for lithium–sulfur batteries, and electrocatalysts for oxygen‐ and hydrogen‐involving energy conversion reactions. The potential superiorities of complex hollow nanostructures for these applications are particularly highlighted. Finally, we conclude this Review with urgent challenges and further research directions of complex hollow nanostructures for energy‐related applications.  相似文献   

17.
Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon‐based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon‐based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon‐based nanocomposites, namely, 1D carbon‐embedded, carbon‐coated, carbon‐encapsulated, and carbon‐supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li‐ion batteries, Na‐ion batteries, Li–S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon‐based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon‐based nanocomposites for EES is provided.  相似文献   

18.
Owing to the safety issue of lithium ion batteries (LIBs) under the harsh operating conditions of electric vehicles and mobile devices, all‐solid‐state lithium batteries (ASSLBs) that utilize inorganic solid electrolytes are regarded as a secure next‐generation battery system. Significant efforts are devoted to developing each component of ASSLBs, such as the solid electrolyte and the active materials, which have led to considerable improvements in their electrochemical properties. Among the various solid electrolytes such as sulfide, polymer, and oxide, the sulfide solid electrolyte is considered as the most promising candidate for commercialization because of its high lithium ion conductivity and mechanical properties. However, the disparity in energy and power density between the current sulfide ASSLBs and conventional LIBs is still wide, owing to a lack of understanding of the battery electrode system. Representative developments of ASSLBs in terms of the sulfide solid electrolyte, active materials, and electrode engineering are presented with emphasis on the current status of their electrochemical performances, compared to those of LIBs. As a rational method to realizing high energy sulfide ASSLBs, the requirements for the sulfide solid electrolytes and active materials are provided along through simple experimental demonstrations. Potential future research directions in the development of commercially viable sulfide ASSLBs are suggested.  相似文献   

19.
With the advent of carbon nanotechnology, which initiated significant research efforts more than two decades ago, novel materials for energy harvesting and storage have emerged at an amazing pace. Nevertheless, some fundamental applications are still dominated by traditional materials, and it is especially evident in the case of catalysis, and environmental‐related electrochemical reactions, where precious metals such as Pt and Ir are widely used. Several strategies are being explored for achieving competitive and feasible metal‐free carbon nanomaterials, among which doping and defect engineering approaches within nanocarbons are recurrent and promising. Here, the most recent efforts regarding the control of doping and defects in carbon nanostructures for catalysis, and in particular for energy‐related applications, are addressed. Finally, an overview of alternative proposals that can make a difference when enabling carbon nanomaterials as efficient and emerging catalysts is presented.  相似文献   

20.
Energy‐storage technologies such as lithium‐ion batteries and supercapacitors have become fundamental building blocks in modern society. Recently, the emerging direction toward the ever‐growing market of flexible and wearable electronics has nourished progress in building multifunctional energy‐storage systems that can be bent, folded, crumpled, and stretched while maintaining their electrochemical functions under deformation. Here, recent progress and well‐developed strategies in research designed to accomplish flexible and stretchable lithium‐ion batteries and supercapacitors are reviewed. The challenges of developing novel materials and configurations with tailored features, and in designing simple and large‐scaled manufacturing methods that can be widely utilized are considered. Furthermore, the perspectives and opportunities for this emerging field of materials science and engineering are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号