首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Liquid crystals, elongated molecules with a structured liquid phase, may be used as new solvents for CO2 capture. However, no molecule has been found yet with optimal properties. Therefore, mixtures of two liquid crystals and CO2 are investigated. Also, the phase behavior of some binary subsystems of the investigated ternary systems is studied for comparison. In the mixtures investigated, 4,4′‐pentyloxycyanobiphenyl + 4,4′‐heptyloxycyanobiphenyl + CO2 and 4,4′‐propylcyclohexylbenzonitrile + 4,4′‐heptylcyclohexylbenzonitrile + CO2, the nematic phases form a nematic homogeneous solution and the solid phases form an eutectic system, leading to a material with improved properties for CO2 capture. Moreover, the ternary mixture of 4,4′‐propylcyclohexylbenzonitrile + 4,4′‐heptylcyclohexylbenzonitrile + CO2 showed an increased solubility of CO2 compared with the binary subsystems. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2977–2984, 2015  相似文献   

2.
The VLLE flash is important in water and hydrocarbons mixtures, hydrocarbon and CO2 rich mixtures, and hydrocarbon methane rich mixtures that are encountered in reservoir performance and recovery studies. A robust VLLE flash algorithm is proposed. The equilibrium and mass balance equations are solved as a constrained minimization problem. An inverse barrier function is used to handle the inequality constrains to solve for the phase fractions. It warrants always arriving to the solution. The challenging cases analyzed showed that the initialization procedure proposed, together with successive substitution iteration in the outer loop, is a good method for a stable VLLE flash algorithm, even near critical points. Whenever the result is in the region outside the three‐phase physical domain, the solution suggests that the system has fewer phases. In one of the cases analyzed, a region with three liquid phases was encountered and the algorithm found two different solutions with positive phase fractions. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3081–3093, 2015  相似文献   

3.
In this work, nonequilibrium thermodynamics and phase field theory (PFT) has been applied to study the kinetics of phase transitions associated with CO2 injection into systems containing CH4 hydrate, free CH4 gas, and varying amounts of liquid water. The CH4 hydrate was converted into either pure CO2 or mixed CO2?CH4 hydrate to investigate the impact of two primary mechanisms governing the relevant phase transitions: solid‐state mass transport through hydrate and heat transfer away from the newly formed CO2 hydrate. Experimentally proven dependence of kinetic conversion rate on the amount of available free pore water was investigated and successfully reproduced in our model systems. It was found that rate of conversion was directly proportional to the amount of liquid water initially surrounding the hydrate. When all of the liquid has been converted into either CO2 or mixed CO2?CH4 hydrate, a much slower solid‐state mass transport becomes the dominant mechanism. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3944–3957, 2015  相似文献   

4.
The coproduction of liquid transportation fuels and C6?C8 aromatics from the thermochemical conversion of biomass and natural gas (BGTL+C6_C8) is investigated in this article. An optimization‐based process synthesis framework incorporating multiple synthesis gas conversion technologies, such as Fischer–Tropsch synthesis or methanol conversion, is described. Production of aromatics can proceed through several technologies, such as naphtha reforming and aromatization of hydrocarbons via a metal‐promoted H‐ZSM‐5 catalyst. This is the first article in the literature to incorporate an aromatics complex for the coproduction of liquid fuels and C6?C8 petrochemicals within a rigorous process synthesis and deterministic global optimization framework. The optimal process topologies across several case studies are discussed and the results indicate that the coproduction of aromatics with liquid fuels can significantly increase the profitability of these refineries. © 2015 American Institute of Chemical Engineers AIChE J, 2015 2014 American Institute of Chemical Engineers AIChE J, 61: 831–856, 2015  相似文献   

5.
An eggshell Mo2C catalyst which is designed from the rapid combination of molybdate with melamine is described. In contrast to Pd‐based catalysts, the eggshell Mo2C operates effectively with a wide‐concentration window in high‐temperature gas phase hydrogenation of phenylacetylene, thus, an economical and energy‐efficient front‐end purification of styrene monomers might be possible. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2522–2531, 2015  相似文献   

6.
Water content of three carbon dioxide containing natural gas mixtures in equilibrium with an aqueous phase was measured using a dynamic saturation method. Measurements were performed up to high temperatures (477.6 K = 400°F) and pressures (103.4 MPa = 15,000 psia). The perturbed chain form of the statistical associating fluid theory was applied to predict water content of pure carbon dioxide (CO2), hydrogen sulfide (H2S), nitrous oxide (N2O), nitrogen (N2), and argon (Ar) systems. The theory application was also extended to model water content of acid gas mixtures containing methane (CH4). To model accurately the liquid‐liquid equilibrium at subcritical conditions, cross association between CO2, H2S, and water was included. The agreement between the model predictions and experimental data measured in this work was found to be good up to high temperatures and pressures. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3038–3052, 2015  相似文献   

7.
High pressure carbon dioxide was dissolved in ionic liquid + toluene mixtures to obtain the conditions of pressure and composition where a liquid‐liquid phase split occurs at constant temperature. Ionic liquids (ILs) with four different cations paired with the bis(trifluoromethylsulfonyl)imide ([Tf2N]?) anion were selected: 1‐hexyl‐3‐methylimidazolium ([hmim]+), 1‐hexyl‐3‐methylpyridinium ([hmpy]+), triethyloctylphosphonium ([P2228]+), and tetradecyltrihexylphosphonium ([P66614]+). The solubility of CO2 was measured in the liquid mixtures at temperatures between 298 and 333 K and at pressures up to 8 MPa, or until the second liquid phase appeared, for initial liquid phase compositions of 0.30, 0.50, and 0.70 mole fraction of IL. Ternary isotherms were compared with the binary solubility of CO2 in each IL and pure toluene. The lowest pressure for separating toluene in a second liquid phase was achieved by decreasing the temperature of the system, increasing the amount of toluene in the initial liquid mixture and using [hmim][Tf2N]. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2968–2976, 2015  相似文献   

8.
A gas‐liquid Eulerian porous media computational fluid dynamics (CFD) model was developed for an absorber with structured packing to remove CO2 from natural gas by mono‐ethanol‐amine (MEA). The three‐dimensional geometry of the amine absorber with Mellapak 500.X was constructed to investigate the effect of the tilting and motion experienced on ships and barges for offshore plants. The momentum equation included porous resistance, gas‐liquid momentum exchange, and liquid dispersion to replace structured‐packing by porous media. The mass equation involved mass transfer of CO2 gas into MEA solution, and one chemical reaction. Parameters of the CFD model were adjusted to fit experimental data measured in the CO2‐MEA system. As the tilting angle increased, the liquid holdup and effective interfacial area decreased and CO2 removal efficiency was lowered. The uniformity of liquid holdup deteriorated by 10% for a 3° static tilting, and a rolling motion with 4.5° amplitude and 12 s period, respectively. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4412–4425, 2015  相似文献   

9.
Absorption of a weakly soluble gas into a two‐layer film flowing down a vertical wall is studied in the framework of an approximate long‐wave model. It is shown that wavy regimes in the film strongly affect the absorption rate. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2058–2069, 2015  相似文献   

10.
Microreactor technology is widely used for process intensification and is essential for fast and strongly exothermic reactions exhibiting mass and heat transfer limitations. In the scope of the MINERVE Power‐to‐Gas project, sponsored by KIC InnoEnergy from 2012 to 2015, a micro packed bed reactor was developed for conversion of syngas containing CO2 into methane. This work focuses on heat removal and temperature control in a manufactured device using syngas throughputs less than 1.4 Nm3/h (10% CO, 7% CO2, H2/C = 4) while examining the cooling potential of different cooling fluids, e.g., air, steam and water. © 2016 American Institute of Chemical Engineers AIChE J, 63: 120–129, 2017  相似文献   

11.
Uncertainties in property models can significantly affect the results obtained from process simulations. If these uncertainties are not quantified, optimal plant designs based on such models can be misleading. With this incentive, a systematic, generalized uncertainty quantification (UQ) methodology for property models is developed. Starting with prior beliefs about parametric uncertainties, a Bayesian method is used to derive informed posteriors using the experimental data. To reduce the computational expense, surrogate response surface models are developed. For downselecting the parameter space, a sensitivity matrix‐based approach is developed. The methodology is then deployed to the property models for an MEA‐CO2‐H2O system. The UQ analysis is found to provide interesting information about uncertainties in the parameter space. The sensitivity matrix approach is also found to be a valuable tool for reducing computational expense. Finally, the effect of the estimated parametric uncertainty on CO2 absorption and monoethanolamine (MEA) regeneration is analyzed. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1822–1839, 2015  相似文献   

12.
Microchannels have great potential in intensification of gas–liquid–liquid reactions involving reacting gases, such as hydrogenation. This work uses CO2–octane–water system to model the hydrodynamics and mass transfer of such systems in a microchannel with double T‐junctions. Segmented flows are generated with three inlet sequences and the size laws of dispersed phases are obtained. Three generation mechanisms of dispersed gas bubbles/water droplets are identified: squeezing by the oil phase, cutting by the droplet/bubble, cutting by the water–oil/gas–oil interface. Based on the gas dissolution rate, the mass transfer coefficients are calculated. It is found that water droplet can significantly enhance the transfer of CO2 into the oil phase initially. When bubble‐droplet cluster are formed downstream the microchannel, droplet will retard the mass transfer. Other characteristics such as phase hold‐up, bubble velocity and bubble dissolution rate are also discussed. The information is beneficial for microreactor design when applying three‐phase reactions. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1727–1739, 2017  相似文献   

13.
14.
The kinetics for the reactions of carbon dioxide with 2‐amine‐2‐methyl‐1‐propanol (AMP) and carbon dioxide (CO2) in both aqueous and nonaqueous solutions were measured using a microfluidic method at a temperature range of 298–318 K. The mixtures of AMP‐water and AMP‐ethylene glycol were applied for the working systems. Gas‐liquid bubbly microflows were formed through a microsieve device and used to determine the reaction characteristics by online observation of the volume change of microbubbles at the initial flow stage. In this condition, a mathematical model according to zwitterion mechanism has been developed to predict the reaction kinetics. The predicted kinetics of CO2 absorption in the AMP aqueous solution verified the reliability of the method by comparing with literatures’ results. Furthermore, the reaction rate parameters for the reaction of CO2 with AMP in both solutions were determined. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4358–4366, 2015  相似文献   

15.
Hollow fiber MFI zeolite membranes were modified by catalytic cracking deposition of methyldiethoxysilane to enhance their H2/CO2 separation performance and further used in high temperature water gas shift membrane reactor. Steam was used as the sweep gas in the MR for the production of pure H2. Extensive investigations were conducted on MR performance by variations of temperature, feed pressure, sweep steam flow rate, and steam‐to‐CO ratio. CO conversion was obviously enhanced in the MR as compared with conventional packed‐bed reactor (PBR) due to the coupled effects of H2 removal as well as counter‐diffusion of sweep steam. Significant increment in CO conversion for MR vs. PBR was obtained at relatively low temperature and steam‐to‐CO ratio. A high H2 permeate purity of 98.2% could be achieved in the MR swept by steam. Moreover, the MR exhibited an excellent long‐term operating stability for 100 h in despite of the membrane quality. © 2015 American Institute of Chemical Engineers AIChE J, 61: 3459–3469, 2015  相似文献   

16.
The direct recovery of methane from gas hydrate‐bearing sediments is demonstrated, where a gaseous mixture of CO2 + N2 is used to trigger a replacement reaction in complex phase surroundings. A one‐dimensional high‐pressure reactor (8 m) was designed to test the actual aspects of the replacement reaction occurring in natural gas hydrate (NGH) reservoir conditions. NGH can be converted into CO2 hydrate by a “replacement mechanism,” which serves double duty as a means of both sustainable energy source extraction and greenhouse gas sequestration. The replacement efficiency controlling totally recovered CH4 amount is inversely proportional to CO2 + N2 injection rate which directly affecting solid ‐ gas contact time. Qualitative/quantitative analysis on compositional profiles at each port reveals that the length more than 5.6 m is required to show noticeable recovery rate for NGH production. These outcomes are expected to establish the optimized key process variables for near future field production tests. © 2014 American Institute of Chemical Engineers AIChE J, 61: 1004–1014, 2015  相似文献   

17.
Agriculture is mankind's single largest usage of water, comprising 70% of all water usage. Optimizing water usage in agriculture is therefore crucial to ensuring global water security. A greenhouse is quantitatively modeled as a bioreactor and it is shown that the bulk of the water supplied to a conventionally aspirated greenhouse is lost in the form of humidity. This implies that evaporative losses in agriculture comprise a clear majority of mankind's total water consumption. Inlet CO2 enrichment using existing membrane materials can minimize the air feed rate required to supply adequate CO2 for photosynthesis, thereby mitigating evaporative losses. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2324–2328, 2018  相似文献   

18.
Experimental results are presented for the solubility of CO2 in an aqueous solution of phenol and NaOH (molalties in water: phenol: 0.5; NaOH: 1.0) at (314, 354, and 395) K and pressures up to 10 MPa. The experimental work extends recent investigations on the influence of phenol as well as of (phenol + NaCl) on the solubility of CO2 in water. In contrast to those previous investigations, the strong electrolyte reacts with carbon dioxide and also with phenol. The experimental results are compared with predictions from a thermodynamic model. That model combines a model for the “chemical” solubility of CO2 in aqueous solutions of NaOH with a model for the “physical” solubility of CO2 in aqueous solutions of phenol. An extension is introduced to account for the chemical reaction between the weak acid phenol and the strong base sodium hydroxide. The prediction results nicely agree with the new experimental data. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2832–2840, 2015  相似文献   

19.
This work investigates CO2 removal by single and blended amines in a hollow‐fiber membrane contactor (HFMC) under gas‐filled and partially liquid‐filled membrane pores conditions via a two‐scale, nonisothermal, steady‐state model accounting for CO2 diffusion in gas‐filled pores, CO2 and amines diffusion/reaction within liquid‐filled pores and CO2 and amines diffusion/reaction in liquid boundary layer. Model predictions were compared with CO2 absorption data under various experimental conditions. The model was used to analyze the effects of liquid and gas velocity, CO2 partial pressure, single (primary, secondary, tertiary, and sterically hindered alkanolamines) and mixed amines solution type, membrane wetting, and cocurrent/countercurrent flow orientation on the HFMC performance. An insignificant difference between the absorption in cocurrent and countercurrent flow was observed in this study. The membrane wetting decreases significantly the performance of hollow‐fiber membrane module. The nonisothermal simulations reveal that the hollow‐fiber membrane module operation can be considered as nearly isothermal. © 2014 American Institute of Chemical Engineers AIChE J, 61: 955–971, 2015  相似文献   

20.
This letter reports on the hydrophobicity and oleophilicity of open‐cell foams from polymer blends prepared by supercritical CO2. A typical bulk density of the foam is measured to be 0.05 g/cm3. The contact angle of the foam with water is determined to be 139.2°. The foam can selectively absorb the diesel from water with the uptake capacity of 17.0 g/g. The foams are technologically promising for application of oil spill cleanup. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4182–4185, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号