首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
导电聚合物复合材料作为超级电容器电极材料   总被引:1,自引:0,他引:1  
本文综述了基于导电聚合物的复合材料(导电聚合物/碳材料、导电聚合物/金属氧化物材料、导电聚合物/碳材料l金属氧化物材料)作为电极材料在超级电容器中的应用进展,指出将导电聚合物与碳材料或金属氧化物复合,双电层电容与法拉第准电容结合,有机材料与无机材料结合,是超级电容器电极材料研究的重要发展方向.  相似文献   

2.
胡涛  张熊  安亚斌  李晨  马衍伟 《化工学报》2020,71(6):2530-2546
锂离子电容器是一种采用电容型正极材料、电池型负极材料进行组装的储能器件,结合了锂离子电池与超级电容器两者的优点,兼具高能量密度、高功率密度和长循环寿命。但是由于锂离子电容器还存在正负极动力学过程以及容量不匹配的问题,大大影响了锂离子电容器的电化学性能。通常锂离子电容器的功率密度取决于负极材料,而能量密度取决于正极材料,因此为提高锂离子电容器的能量密度,还需发展具有高比容量和高导电性的正极材料。目前,碳材料因具有低成本、来源广泛、高比表面积和丰富的孔道结构等特点,是一种极具应用潜力的电极材料。综述并分析了各种碳材料(包括活性炭、模板炭、石墨烯和生物炭等)作为锂离子电容器正极材料的电化学性能与优缺点,最后对锂离子电容器正极材料的研究提出了建议与展望。  相似文献   

3.
轻便灵活的柔性超级电容器在可穿戴和便携式电子储能装置中有着潜在的应用前景。碳材料因具有优异的柔韧性、良好的导电性和较大的比表面积,通常在柔性超级电容器中发挥着柔性基底和导电活性填料的作用。本文首先综述了双电层、赝电容以及混合型超级电容器的储能机理。其次分别介绍了以碳材料作为柔性基底和导电活性填料的最新研究进展。碳材料作为柔性基底复合赝电容材料时,既可以提供大的比表面积,也可为氧化还原反应提供大量活性位点;而作为其他柔性基底的导电活性填料时,既能够改善赝电容材料稳定性的问题,也为电解质离子提供传输通道。文章最后提出了当下柔性超级电容器电极在力学性能、制备方法和评价标准中面临的相关问题。  相似文献   

4.
将具有法拉第赝电容但导电性较差的材料与具有良好导电性的石墨烯结合是提高超级电容器电极材料电容性能的合理策略。以水热法制备的Ni(OH)_2/石墨烯复合材料与生长有Co(OH)_2的泡沫镍制得修饰电极。用循环伏安法(CV)、恒电流充放电(CP)和电化学阻抗(EIS)测试了其在6 mol/L KOH溶液中的电容行为。实验表明,片状六边形Ni(OH)_2插入薄膜状石墨烯片层间,Ni(OH)_2/石墨烯/Co(OH)_2电极材料有良好的电容性能,在电流密度为1 A/g时比电容量达到了294 F/g,能量密度为36.75 Wh/kg。充放电循环1 000圈后比电容值仍是初始电容的92.7%。  相似文献   

5.
超级电容器是一种介于传统电容器与化学电源之间的新型储能元件,它具有充电时间短、循环寿命长、功率密度大、能量密度高、适用温度范围宽和经济环保等优势,目前在很多领域都受到广泛关注。本文概述了超级电容器电极材料的研究情况,包括碳基材料、金属氧化物材料及导电聚合物材料等。  相似文献   

6.
超级电容器是一种介于电池和传统电容器的一种新的储能器件,也叫电化学超级电容器。介绍了目前国内外的超级电容器电极材料的研究现状以及展望,如碳材料、金属氧化物、导电聚合物。  相似文献   

7.
超级电容器具有高比电容、工作电压范围广、环境友好、高能量密度和高功率密度等特性,作为一种新型的储能器件被广泛应用到各种领域。本文介绍了超级电容器的组成,储能原理以及电极材料的分类,而超级电容器研究热点集中在电极材料上,并对电极材料的发展趋势进行了展望。  相似文献   

8.
锂离子电容器作为一种新型电化学储能器件,由于具有高比能量、高比功率和长循环寿命等优点,已经在电动汽车、轨道交通和新型储能系统等领域获得应用示范。作为锂离子电容器的核心组成部分,电极材料对器件性能的发挥起到了决定性的作用。碳材料由于具有较高的电化学活性,可以有效地提高锂离子电容器的电化学性能。本文综述了碳材料作为锂离子电容器电极的最新研究进展,并对其发展的前景进行了展望。  相似文献   

9.
《超硬材料工程》2021,(6):51-51
超级电容器是一种具有充放电速度快、循环寿命超长的储能设备,但是能量密度很低。在众多超级电容器材料中,碳材料由于显著的环境优势和可持续性受到广泛关注。对碳材料的研究重点多为创造高比表面积并已取得了很好的效果,但为了获得更高的能量密度,提升活性物质的质量密度也是重要方式。此外,以往研究中利用石墨烯相关结构的开放框架结构已经开发出了能量为110 W h/L、功率为1 kW/L的超级电容器。然而这在能量密度方面仍然与电池具有差距,需要进一步研究并开发更高性能的碳基材料。  相似文献   

10.
石墨烯由于其独特的二维结构和优异的物理性质,如高电导率、高比表面积等,是目前最具潜力的超级电容器的电极材料之一。本文综述了石墨烯作为超级电容器电极材料的研究进展,包括石墨烯的改性与结构设计、石墨烯与赝电容电极材料复合(如金属氧化物和导电聚合物)、石墨烯与其他炭材料复合等。并对石墨烯应用到超级电容器电极材料中存在的问题展开了讨论。  相似文献   

11.
多孔碳材料因其优异的导电性和稳定性,以及成本低廉等优点而成为当今的研究热点之一。以苯酚、甲醛和三聚氰胺为原料,利用高浓度氯化锌来提供超盐环境,经溶剂热反应后,在氮气中800℃下热解制得了含氮碳气凝胶(NCA)。扫描电子显微镜、拉曼光谱、X射线光电子能谱和氮气吸附等表征结果表明,该含氮碳气凝胶具有分级多孔蜂窝状结构,其比表面积高达729.6 m2/g。采用三电极测试体系测试了含氮碳气凝胶的电化学性能,结果表明,在三电极体系中,以0.5 mol/L H2SO4作为电解液,含氮碳气凝胶在电流密度为1 A/g时比电容达到350.7 F/g;在电流密度为20 A/g时,经过10000次充放电后,含氮碳气凝胶的电容保持率仍高达97.8%。在双电极体系中,含氮碳气凝胶在800 W/kg的功率密度下,能量密度可达26.8 (W·h)/kg。上述结果表明,该含氮碳气凝胶是一种非常理想的超级电容器电极材料。  相似文献   

12.
Several types of electrode materials have been developed for high–performance supercapacitors. Most of the relevant studies have focused on the discovery of new atomic structures and paid limited attention to the effect of heterostructures in supercapacitor electrodes, which has long hindered the fundamental understanding of the use of hybrid materials in supercapacitors. In this study, a novel heterostructure based on perovskite oxide (LaNiO3) nanosheets and polyazulene was synthesized. The as–prepared heterostructure–based supercapacitor exhibited a specific capacitance of up to 464 F g−1 at a high current density of 2 A g−1 in 1–ethyl–3–methylimidazolium tetrafluoroborate. In a symmetric supercapacitor, this heterostructure delivered an energy density of up to 56.4 Wh kg−1 at a power density of 1100 W kg−1. Both LaNiO3 and polyazulene contributed pseudocapacitance and dominated the performance. Unexpectedly, electric double–layer capacitance was found to contribute in this system. Density functional theory calculations indicated that the advantage of the high electrical conductivity of the heterostructure benefited the supercapacitor operation. Electrochemical quartz crystal microbalance analysis revealed that the fast ion flux and adsorption boosted performance. The high intrinsic electrical conductivity and improved stability make this heterostructure a promising electrode material candidate for supercapacitors.  相似文献   

13.
The latest trend in the direction of miniaturized portable electronic devices has brought up necessitate for rechargeable energy sources. Among the various non conventional energy devices, the supercapacitor is the promising candidate for gleaning the energy. Supercapacitor, as a new energy device that colligates the gap between conventional capacitors and batteries, it has attracted more attention due to its high power density and long cycle life. Many researchers work on, synthesizing new electrode material for the development of supercapacitor. The electrode material possesses salient structure and electrochemical properties exhibit the efficient performance of the supercapacitor. Graphene has high carrier mobility, thermal conductivity, elasticity and stiffness and also has a theoretical specific capacitance of 2630 m2g??1 corresponds to a specific capacitance of 550 Fg??1. This article summarizes and reviews the electrochemical performance and applications of various graphene composite materials such as graphene/polyaniline, graphene/polypyrrole, graphene/metal oxide, graphene/activated carbon, graphene/carbon nanotube as an electrode materials towards highly efficient supercapacitors and also dealt with symmetric, asymmetric and hybrid nature of the graphene based supercapacitor.  相似文献   

14.
Jiang H  Li C  Sun T  Ma J 《Nanoscale》2012,4(3):807-812
A green asymmetric supercapacitor with high energy density has been developed using birnessite-type ultrathin porous MnO(2) nanoflowers (UBMNFs) as positive electrode and functional mesoporous carbon nanotubes (FMCNTs) as negative electrode in 1 M Na(2)SO(4) electrolyte. Both of the electrode materials possess excellent electrochemical performances, with high surface areas and narrow pore size distributions. More significantly, the assembled asymmetric supercapacitor with optimal mass ratio can be cycled reversibly in the high-potential range of 0-2.0 V and exhibits an excellent energy density as high as 47.4 W h kg(-1), which is much higher than those of symmetric supercapacitors based on UBMNFs//UBMNFs and FMCNTs//FMCNTs supercapacitors. Furthermore, our asymmetric supercapacitor (ASC) device also exhibits a superior cycling stability with 90% retention of the initial specific capacitance after 1000 cycles and stable Coulombic efficiency of ~98%. These intriguing results exhibit great potential in developing high energy density "green supercapacitors" for practical applications.  相似文献   

15.
The two-dimensional hexagonal boron nitride (h-BN) has garnered tremendous interest due to its unique mechanical, thermal and electronic properties. However, the application of h-BN has been restricted as electrode materials for supercapacitors because of its wide band gap and rather low conductivity. Herein, a carbon-modified hexagonal boron nitride nanosheet (h-BN/C) nanocomposite is prepared through a facile and scalable solid-state reaction. Interestingly, the h-BN/C nanocomposite as cathode material exhibits a pair of distinct and reversible redox peaks in 2?M KOH aqueous electrolyte. Because of the enhanced electrical conductivity derived from the modified carbon and the increased specific surface area, the h-BN/C nanocomposite presents a high specific capacitance of 250?F?g?1 at the current density of 0.5?A?g?1. More importantly, the fabricated aqueous asymmetric supercapacitor with the h-BN/C as cathode and activated carbon as anode displays an operating voltage of 1.45?V, an energy density of 17?Wh?kg?1 at a power density of 245?W?kg?1, and high stability up to 1000 cycles. Therefore, h-BN/C nanocomposite would promisingly be a cathode material for aqueous asymmetric supercapacitors.  相似文献   

16.
电极材料是决定超级电容器性能的关键因素。钴酸镍纳米材料因其合成简单,价格低廉,储量丰富且理论比电容较高等优点,成为超级电容器电极材料的研究热点。但钴酸镍纳米材料导电率较低、比表面积较小且电化学稳定性较差等缺点严重影响了其实际应用。本文简单介绍了钴酸镍纳米材料的晶体结构以及其作为超级电容器电极材料时的储能机理,同时结合一些示例归纳总结了钴酸镍基纳米材料的制备方法以及钴酸镍纳米材料的改性研究现状,包括形貌改性、复合改性及引入缺陷。最后指出,钴酸镍基纳米材料的环保且高效的制备方法,通过掺杂或缺陷等方法改善其电化学性能,增大其工作电压窗口以及探索适用于钴酸镍基超级电容器工作的电解液,将是未来研究的重点。  相似文献   

17.
《Ceramics International》2022,48(7):9558-9568
As a promising energy storage device, the performance of supercapacitors is greatly influenced by the electrode material. Here, we designed a simple Ni-Mn-S@rGO composite material. The rGO with a two-dimensional layered structure serves as the basis for the in-situ growth of Ni-Mn-S microspheres, which effectively reduces the aggregation of sulfides, provides a rapid electron migration channel, and effectively improves the electrochemical performance of the material. In addition, the synergy between different metal ions will also affect the properties of the materials. Therefore, the materials are optimized by controlling the proportion of different components in the raw materials. The results show that the Ni-Mn-S@rGO-2 with proper composition has a superior specific capacitance of 2042.22F g?1 (at 1A g?1) and a retention rate of 77.78% after 5000 cycles. An all-solid-state asymmetric supercapacitor was fabricated using Ni-Mn-S@rGO-2 and active carbon as electrode materials. The device achieved a high energy density of 77.95 Wh kg?1 at a power density of 750W kg?1. Furthermore, the device retains 81.97% specific capacitance after 10000 charge-discharge cycles, which indicates that the device has satisfactory cycle stability. These results prove that Ni-Mn-S@rGO composites have potential applications in the field of supercapacitors.  相似文献   

18.
Polyvinyl alcohol(PVA)-sodium polyacrylate(PAAS)-KOH-H2O alkaline polymer electrolyte film with high ionic conductivity was prepared by a solution-casting method.Polymer Ni(OH)2/activated carbon(AC) hybrid supercapacitors with different electrode active material mass ratios(positive to negative) were fabricated using this alkaline polymer electrolyte,nickel hydroxide positive electrodes,and AC negative electrodes.Galvanostatic charge/discharge and electrochemical impedance spectroscopy(EIS) methods were used to study the electrochemical performance of the capacitors,such as charge/discharge specific capacitance,rate charge/discharge ability,and charge/discharge cyclic stability.Experimental results showed that with the decreasing of active material mass ratio m(Ni(OH)2)/m(AC),the charge/discharge specific capacitance increases,but the rate charge/discharge ability and the charge/discharge cyclic stability decrease.  相似文献   

19.
In this work, we used combination of two materials as a hybrid electrode material for supercapacitor. Ni(OH)2 was coated on carbon fabric via electrochemical synthesis, and polyaniline salt was coated on Ni(OH)2-coated carbon fabric via in situ chemical oxidative polymerization of aniline in aqueous acidic medium (PNCF). For comparison, polyaniline salt was coated on bare carbon fabric (PCF) by same procedure. These fabrics were characterized by Raman, FE-SEM, and EDAX and also were used as electrodes in symmetric supercapacitor cell. These cells were evaluated using cyclic voltammetry, charge–discharge and impedance spectral measurements. PNCF showed high energy density of 100 W h kg−1 at a power density of 175 W kg−1 and even at a high power density (875 W kg−1), it showed high energy density (74 W h kg−1). PNCF also showed 71% retention capacitance after 25 000 cycles at 1 A g−1. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48042.  相似文献   

20.
《Ceramics International》2022,48(7):9197-9204
Transition metal oxides (TMOs) have been considered as potential anode materials for asymmetric supercapacitors due to their high theoretical capacities. However, undesirable electric conductivity limits the further application in future energy storage. Here, a honeycomb-like architecture of FeOx embedded in the fungi-derived porous carbon-based material (FeOx/C) for asymmetric supercapacitor was reported. The facile synthesis strategy of fungi-derived porous carbon-based iron oxides was using the carbon derived from fungi and the process of carbothermal reduction to form the iron oxide compound. This carbon-encapsulated iron oxide compound provides highly specific surface area (The specific surface area of Fe–O–C-650 was largest (up to 219.0905 m2/g) compared with samples of Fe–O–C-550(144.0304 m2/g), Fe–O–C-750(201.7352 m2/g), Fe–O–C-850(163.2206 m2/g).), an abundance of redox sites, sufficient efficient channels for fast transportation of ions, excellent electrical conductivity, and stable skeleton. Under the three-electrode test system, the FeOx/C electrode delivers excellent specific capacitance of 565F/g at 1 mV/s and impressive cycling performance with capacitance retention of 100% after 3000 cycles. And the NiO electrode delivers a high specific capacitance of 425 F/g at a high current density of 5 mV/s. In addition, the FeOx/C//NiO asymmetric supercapacitor was assembled which exhibits remarkable specific capacitance of 111F/g at 10 mV/s and gravimetric energy density of 36 Wh/kg as well as gravimetric power density of 800W/kg with capacitance retention of 100% after 20,000 cycles, approaching those of ions capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号