首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper, the Nash equilibria for differential games with multiple players is studied. A method for solving the Riccati-type matrix differential equations for open-loop Nash strategy in linear quadratic game with multiple players is presented and analytical solution is given for a type of differential games in which the system matrix can be diagonalizable. As the special cases, the Nash equilibria for some type of differential games with particular structure is studied also, and some results in previous literatures are extended. Finally, a numerical example is given to illustrate the effectiveness of the solution procedure.  相似文献   

2.
Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are, respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in two-player normal form games, and (mixed) Nash equilibria in normal form games with three (or more) players. This paper reviews the underlying computational principles and the corresponding classes.  相似文献   

3.
A method for solving the asymmetric coupled Riccati-type matrix differential equations for open-loop Nash strategy in linear quadratic games is presented. The class of games studied here is one in which the state weighting matrices in player's cost functionals are proportional to each other. By writing in a special order the necessary conditions for open-loop Nash strategy, a matrix with specific properties is derived. These properties are then exploited to solve the two-point boundary-value problem. Some special cases are discussed and a simple example is given to illustrate the solution procedure.  相似文献   

4.
We survey recent joint work with Christos Papadimitriou and Paul Goldberg on the computational complexity of Nash equilibria. We show that finding a Nash equilibrium in normal form games is computationally intractable, but in an unusual way. It does belong to the class NP; but Nash’s theorem, showing that a Nash equilibrium always exists, makes the possibility that it is also NP-complete rather unlikely. We show instead that the problem is as hard computationally as finding Brouwer fixed points, in a precise technical sense, giving rise to a new complexity class called PPAD. The existence of the Nash equilibrium was established via Brouwer’s fixed-point theorem; hence, we provide a computational converse to Nash’s theorem.To alleviate the negative implications of this result for the predictive power of the Nash equilibrium, it seems natural to study the complexity of approximate equilibria: an efficient approximation scheme would imply that players could in principle come arbitrarily close to a Nash equilibrium given enough time. We review recent work on computing approximate equilibria and conclude by studying how symmetries may affect the structure and approximation of Nash equilibria. Nash showed that every symmetric game has a symmetric equilibrium. We complement this theorem with a rich set of structural results for a broader, and more interesting class of games with symmetries, called anonymous games.  相似文献   

5.
In this paperk-player nonzero sum differential games are considered. A necessary condition for the closed-loop Nash equilibrium solution to be noninferior is presented. This condition involves the rank of a matrix made up of the first partial derivatives of thekHamiltonians. This condition is also a sufficient condition for the existence of a solution with the property that if the players use this solution each player does at least as well as when the Nash solutions are used and at least one player does better.  相似文献   

6.
Sampled fictitious play (SFP) is a recently proposed iterative learning mechanism for computing Nash equilibria of non-cooperative games. For games of identical interests, every limit point of the sequence of mixed strategies induced by the empirical frequencies of best response actions that players in SFP play is a Nash equilibrium. Because discrete optimization problems can be viewed as games of identical interests wherein Nash equilibria define a type of local optimum, SFP has recently been employed as a heuristic optimization algorithm with promising empirical performance. However, there have been no guarantees of convergence to a globally optimal Nash equilibrium established for any of the problem classes considered to date. In this paper, we introduce a variant of SFP and show that it converges almost surely to optimal policies in model-free, finite-horizon stochastic dynamic programs. The key idea is to view the dynamic programming states as players, whose common interest is to maximize the total multi-period expected reward starting in a fixed initial state. We also offer empirical results suggesting that our SFP variant is effective in practice for small to moderate sized model-free problems.  相似文献   

7.
This paper analyzes the Bertrand–Edgeworth duopoly model using a solution concept of Equilibrium in Secure Strategies (EinSS), which describes cautious behavior in noncooperative games. The concept is suitable for studying games where the threats of other players represent an important factor in the decision-making process. We demonstrate that, in some cases where the Bertrand–Edgeworth price duopoly admits no Nash–Cournot equilibria, there exists a unique EinSS with both players choosing an identical equilibrium price lower than the monopoly price. The difference between these prices can be interpreted as an additional reduction in price that allows the players to secure themselves against the mutual threats of undercutting. We formulate and prove a criterion for the EinSS existence.  相似文献   

8.
This paper's proposal is to show some significant results obtained by the application of the optimization algorithm known as Fuzzy Adaptive Simulated Annealing (Fuzzy ASA) to the task of finding all Nash equilibria of normal form games. To that end, a special version of Fuzzy ASA, that utilizes space-filling curves to find good seeds, is applied to several well-known strategic games, showing its effectiveness in obtaining all Nash equilibria in all cases. The results are compared to previous work that also used computational intelligence techniques in order to solve the same problem but could not find all equilibria in all tests. Game theory is a very important subject, modeling interactions between generic agents, and Nash equilibrium represents a powerful concept portraying situations in which joint strategies are optimal in the sense that no player can benefit from changing her/his strategy while the other players do not change their strategies as well. So, new techniques are always welcome, mainly those that can find the whole set of solutions for a given strategic game.  相似文献   

9.
A widely accepted rational behavior for non-cooperative players is based on the notion of Nash equilibrium. Although the existence of a Nash equilibrium is guaranteed in the mixed framework (i.e., when players select their actions in a randomized manner) in many real-world applications the existence of “any” equilibrium is not enough. Rather, it is often desirable to single out equilibria satisfying some additional requirements (in order, for instance, to guarantee a minimum payoff to certain players), which we call constrained Nash equilibria.In this paper, a formal framework for specifying these kinds of requirement is introduced and investigated in the context of graphical games, where a player p may directly be interested in some of the other players only, called the neighbors of p. This setting is very useful for modeling large population games, where typically each player does not directly depend on all the players, and representing her utility function extensively is either inconvenient or infeasible.Based on this framework, the complexity of deciding the existence and of computing constrained equilibria is then investigated, in the light of evidencing how the intrinsic difficulty of these tasks is affected by the requirements prescribed at the equilibrium and by the structure of players’ interactions. The analysis is carried out for the setting of mixed strategies as well as for the setting of pure strategies, i.e., when players are forced to deterministically choose the action to perform. In particular, for this latter case, restrictions on players’ interactions and on constraints are identified, that make the computation of Nash equilibria an easy problem, for which polynomial and highly-parallelizable algorithms are presented.  相似文献   

10.
Known general proofs of Nash’s Theorem (about the existence of Nash Equilibria (NEa) in finite strategic games) rely on the use of a fixed point theorem (e.g. Brouwer’s or Kakutani’s). While it seems that there is no general way of proving the existence of Nash equilibria without the use of a fixed point theorem, there do however exist some (not so common in the CS literature) proofs that seem to indicate alternative proof paths, for games of two players. This note discusses two such proofs.  相似文献   

11.
B. Tołwiński 《Automatica》1982,18(4):431-441
The paper proposes an equilibrium solution concept for dynamic games where players can communicate with one another, but cannot make contractual agreements. In such games, unlike the static problems without contracting possibilities, the cooperation between players is possible due to the fact that the realization of negotiated agreements can be enforced by suitably-defined strategies. The definition presented combines dynamic programming, the theory of bargaining and the notion of enforceable agreements to produce a class of cooperative solutions defined in the form of memory Nash equilibria satisfying the principle of optimality along the equilibrium trajectory. The choice of a particular solution in this class depends on players' expected actions in case of disagreement, and on an adopted negotiation scheme formalized in the form of a bargaining model. Possible formulations of disagreement policies and bargaining models are discussed in some detail.  相似文献   

12.
In a matrix game, the interactions among players are based on the assumption that each player has accurate information about the payoffs of their interactions and the other players are rationally self‐interested. As a result, the players should definitely take Nash equilibrium strategies. However, in real‐life, when choosing their optimal strategies, sometimes the players have to face missing, imprecise (i.e., interval), ambiguous lottery payoffs of pure strategy profiles and even compound strategy profile, which means that it is hard to determine a Nash equilibrium. To address this issue, in this paper we introduce a new solution concept, called ambiguous Nash equilibrium, which extends the concept of Nash equilibrium to the one that can handle these types of ambiguous payoff. Moreover, we will reveal some properties of matrix games of this kind. In particular, we show that a Nash equilibrium is a special case of ambiguous Nash equilibrium if the players have accurate information of each player's payoff sets. Finally, we give an example to illustrate how our approach deals with real‐life game theory problems.  相似文献   

13.
We consider the zero-endpoint infinite-horizon LQ problem. We show that the existence of an optimal policy in the class of feedback controls is a sufficient condition for the existence of a stabilizing solution to the algebraic Riccati equation. This result is shown without assuming positive definiteness of the state weighting matrix. The feedback formulation of the optimization problem is natural in the context of differential games and we provide a characterization of feedback Nash equilibria both in a deterministic and stochastic context.  相似文献   

14.
We study the computational complexity of problems involving equilibria in strategic games and in perfect information extensive games when the number of players is large. We consider, among others, the problems of deciding the existence of a pure Nash equilibrium in strategic games or deciding the existence of a pure Nash or a subgame perfect Nash equilibrium with a given payoff in finite perfect information extensive games. We address the fundamental question of how can we represent a game with a large number of players? We propose three ways of representing a game with different degrees of succinctness for the components of the game. For perfect information extensive games we show that when the number of moves of each player is large and the input game is represented succinctly these problems are PSPACE-complete. In contraposition, when the game is described explicitly by means of its associated tree all these problems are decidable in polynomial time. For strategic games we show that the complexity of deciding the existence of a pure Nash equilibrium depends on the succinctness of the game representation and then on the size of the action sets. In particular we show that it is NP-complete, when the number of players is large and the number of actions for each player is constant, and that the problem is -complete when the number of players is a constant and the size of the action sets is exponential in the size of the game representation. Again when the game is described explicitly the problem is decidable in polynomial time.  相似文献   

15.
Quantum games with incomplete information can be studied within a Bayesian framework. We consider a version of prisoner’s dilemma (PD) in this framework with three players and characterize the Nash equilibria. A variation of the standard PD game is set up with two types of the second prisoner and the first prisoner plays with them with probability p and \(1-p\), respectively. The Bayesian nature of the game manifests in the uncertainty that the first prisoner faces about his opponent’s type which is encoded either in a classical probability or in the amplitudes of a wave function. Here, we consider scenarios with asymmetric payoffs between the first and second prisoner for different values of the probability, p, and the entanglement. Our results indicate a class of Nash equilibria (NE) with rich structures, characterized by a phase relationship on the strategies of the players. The rich structure can be exploited by the referee to set up rules of the game to push the players toward a specific class of NE. These results provide a deeper insight into the quantum advantages of Bayesian games over their classical counterpart.  相似文献   

16.
一类定量微分对策理论中最优策略的算法及其收敛性   总被引:3,自引:0,他引:3  
吴汉生 《自动化学报》1992,18(2):143-150
本文利用不动点原理讨论了一类定量微分对策理论中最优策略的计算方法问题.首先构 造出了一种迭代方法,然后利用不动点原理分析了该迭代法的收敛性.本文给出的方法还可 用于一类Nash微分对策的Nash策略的分散计算方法.  相似文献   

17.
The central result of classical game theory states that every finite normal form game has a Nash equilibrium, provided that players are allowed to use randomized (mixed) strategies. However, in practice, humans are known to be bad at generating random-like sequences, and true random bits may be unavailable. Even if the players have access to enough random bits for a single instance of the game their randomness might be insufficient if the game is played many times. In this work, we ask whether randomness is necessary for equilibria to exist in finitely repeated games. We show that for a large class of games containing arbitrary two-player zero-sum games, approximate Nash equilibria of the n-stage repeated version of the game exist if and only if both players have Ω(n) random bits. In contrast, we show that there exists a class of games for which no equilibrium exists in pure strategies, yet the n-stage repeated version of the game has an exact Nash equilibrium in which each player uses only a constant number of random bits. When the players are assumed to be computationally bounded, if cryptographic pseudorandom generators (or, equivalently, one-way functions) exist, then the players can base their strategies on “random-like” sequences derived from only a small number of truly random bits. We show that, in contrast, in repeated two-player zero-sum games, if pseudorandom generators do not exist, then Ω(n) random bits remain necessary for equilibria to exist.  相似文献   

18.
We outline the general construction of three-player games with incomplete information which fulfil the following conditions: (i) symmetry with respect to the permutations of players; (ii) the existence of an upper bound for total payoff resulting from Bell inequalities; (iii) the existence of both fair and unfair Nash equilibria saturating this bound. Conditions (i)–(iii) imply that we are dealing with conflicting interest games. An explicit example of such a game is given. A quantum counterpart of this game is considered. It is obtained by keeping the same utilities but replacing classical advisor by a quantum one. It is shown that the quantum game possesses only fair equilibria with strictly higher payoffs than in the classical case. This implies that quantum nonlocality can be used to resolve the conflict between the players.  相似文献   

19.
Supermodular games are a well known class of noncooperative games which find significant applications in a variety of models, especially in operations research and economic applications. Supermodular games always have Nash equilibria which are characterized as fixed points of multivalued functions on complete lattices. Abstract interpretation is here applied to set up an approximation framework for Nash equilibria of supermodular games. This is achieved by extending the theory of abstract interpretation in order to cope with approximations of multivalued functions and by providing some methods for abstracting supermodular games, thus obtaining approximate Nash equilibria which are shown to be correct within the abstract interpretation framework.  相似文献   

20.
The class of weakly acyclic games, which includes potential games and dominance-solvable games, captures many practical application domains. In a weakly acyclic game, from any starting state, there is a sequence of better-response moves that leads to a pure Nash equilibrium; informally, these are games in which natural distributed dynamics, such as better-response dynamics, cannot enter inescapable oscillations. We establish a novel link between such games and the existence of pure Nash equilibria in subgames. Specifically, we show that the existence of a unique pure Nash equilibrium in every subgame implies the weak acyclicity of a game. In contrast, the possible existence of multiple pure Nash equilibria in every subgame is insufficient for weak acyclicity in general; here, we also systematically identify the special cases (in terms of the number of players and strategies) for which this is sufficient to guarantee weak acyclicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号