首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estimation of Design Flood Hydrograph for an Ungauged Watershed   总被引:1,自引:0,他引:1  
Based on the physiographical features of the studied watershed of 102.5 km2 in northern Ontario and the meteorological data of one nearby climatic station, through the combination of the regionalization of flood and the HEC-1 modeling, this article presents an approach that may be used to determine the desired peak flows for the ungauged watershed. The empirical equations used to determine the desired peak flows were developed by the Cumming Cockburn Ltd. (CCL) who has carried out the studies on flood regionalization by using flow data at 380 gauging stations in Ontario. CCL has proposed four methods to estimate peak flows, namely 1) regression method describing multiple linear relationships between flood flow and related parameters; 2) index flood frequency curve; 3) regional flood frequency curve and 4) isoline map for unit peak flow. The desired peak flows for studied watershed determined by CCL methods were used to calibrate the HEC-1 model for the rainfall-runoff simulation for this watershed which consists of 15 subwatersheds. Through slight adjustment in the CN number used in the HEC-1 model, the calibrated HEC-1 model could be used for rainfall-runoff simulation for this ungauged watershed. This approach could be recommended for hydrological design and watershed management for ungauged watersheds provided the analyses of flood regionalization could be conducted. In addition, comparing to the Bavaria forest region, Germany, some questions have been discussed in this article.  相似文献   

2.
Integrating seasonal patterns of water availability and land-use/land-cover change is crucial in watershed planning. Often, these are not considered under hydrological extremes affecting decision making. This article presents results from a multi-site, nested catchment experiment carried out during a dry period in the Cantareira Water Supply System, South-East Brazil, linking quali-quantitative freshwater monitoring to land-use/land-cover change. Results from 17 catchments show regional behaviour for nitrate loads and drainage areas (0.66–925 km2). An inverse correlation between forest cover and water yield was observed. Despite forest growth in spatial extent, nutrient loads showed potential hazards for water security.  相似文献   

3.
流域非闭合特性对岩溶地区水文过程模拟的影响   总被引:4,自引:0,他引:4  
岩溶地区通常发育有大量岩溶裂隙、管道和洞穴,构成错综复杂的地下输水网络,形成了独特的流域水循环模式。地下岩溶构造的存在会造成地下分水岭与地表分水岭的不重合,流域趋于非闭合状态。为了弄清岩溶流域非闭合特性对水文过程模拟的影响,本文以桂林岩溶地区潮田河(漓江支流)流域为研究区域,采用三水源新安江模型模拟该地区多年降雨径流过程。通过比较几组给定流域面积的模拟结果,分析了流域计算面积选取对潮田河流域水文模拟结果精度的影响,并探讨了流域非闭合特性影响下该地区的水体流动模式。研究结果表明:模型率定时,当流域计算面积由340 km~2变化至460 km~2时,NSE先增大后减小,RE值持续增大,两者在380~390 km~2时可同时达到最优;结合不同时间尺度下径流模拟精度的分析结果,给出了合理的流域计算面积,比基于地表分水岭提取的流域面积约小8.9%~11.2%,故部分水量可能通过地下岩溶构造流向邻近流域。合理的流域计算面积对潮田河流域径流模拟精度提高显著,尤其是提升了枯季径流的模拟。  相似文献   

4.
Copula functions are often used for multivariate frequency analyses, but discharge and suspended sediment concentrations have not yet been modelled together with the use of 3-dimensional copula functions. One hydrological station from Slovenia and five stations from USA with watershed areas from 920 km2 to 24,996 km2 were used for trivariate frequency analyses of peak discharges, hydrograph volumes and suspended sediment concentrations. Different parametric marginal distributions were applied and parameters were estimated with the method of L-moments. Maximum pseudo-likelihood method was used for copula parameters estimation. With the use of statistical and graphical tests we selected the most appropriate copula model. Symmetric and asymmetric versions of Archimedean copulas were applied according to the dependence characteristics of the individual stations. We selected Gumbel-Hougaard copula as the most appropriate model for all discussed stations. Primary joint return periods OR and secondary Kendall’s return periods were calculated and comparison between selected copula functions was made. We can conclude that copula functions are useful mathematical tool, which can also be used for modelling variables that are presented in this paper.  相似文献   

5.
Dams are important structures having many functions such as water supply, flood control, hydroelectric power and recreation. Although dam break failures are very rare events, dams can fail with little warning and the damage at the downstream of the dam due to the flood wave can be catastrophic. During a dam failure, immense volume of water is mobilized at very high speed in a very short time. The momentum of the flood wave can turn to a very destructive impact force in residential areas. Therefore, from risk point of view, understanding the consequences of a possible dam failure is critically important. This study deals with the methodology utilized for predicting the flood wave occurring after the dam break and analyses the propagation of the flood wave downstream of the dam. The methodology used in this study includes creation of bathymetric, DEM and land use maps; routing of the flood wave along the valley using a 1D model; and two dimensional numerical modeling of the propagation and spreading of flood wave for various dam breaching scenarios in two different urban areas. Such a methodology is a vital tool for decision-making process since it takes into account the spatial heterogeneity of the basin parameters to predict flood wave propagation downstream of the dam. Proposed methodology is applied to two dams; Porsuk Dam located in Eski?ehir and Alibey Dam located in Istanbul, Turkey. Both dams are selected based on the fact that they have dense residential areas downstream and such a failure would be disastrous in both cases. Model simulations based on three different dam breaching scenarios showed that maximum flow depth can reach to 5 m at the border of the residential areas both in Eski?ehir and in Istanbul with a maximum flow velocity of 5 m/s and flood waves having 0.3 m height reach to the boundary of the residential area within 1 to 2 h. Flooded area in Eski?ehir was estimated as 127 km2, whereas in Istanbul this area was 8.4 km2 in total.  相似文献   

6.
The present study is taken up to test the suitability of SWAT (Soil and Water Assessment Tool) model for estimation of runoff and to understand sensitiveness of model input parameters in a predominantly forested watershed in Kumaun region of Himalaya. The study area Dabka is a small watershed (69.41 km2) lies in North West of Nainital in Uttarakhand. The SWAT is calibrated at an upstream intermediate gauging site Bagjhala draining approximately an area of 65.78 km2 on monthly basis due to non-availability of observed data at main outlet. A local sensitivity analysis is performed on 13 input variables in terms of model outputs such as water yield, surface runoff and baseflow to gain in depth understanding of the role of different model parameters for their proper selection. The study concluded that model performed well with Root Mean Square Error (RMSE) value 0.242 for calibration and 0.81 for validation. Nash Sutcliffe Efficiency (NSE) for calibration and validation period is obtained as 0.77 and 0.73 respectively whereas Coefficient of determination (R2) for calibration and validation period is 0.86 and 0.90 indicating good model performance. The most sensitive model parameters affecting water yield are CN2, GWQMN and SOL_Z. On the basis of sensitiveness of model parameters, the ranking of most sensitive parameters from highest sensitive to relatively lesser sensitiveness on stream flow are CN2, SOL_K and SOL_AWC whereas for base flow SOL_AWC, SOL_Z and GWQMN are found to be more sensitive followed by CN2, ESCO and SOL_K.  相似文献   

7.
Delineation of groundwater potential zones (GWPZ) has been performed for a coastal groundwater basin of eastern India. The groundwater potential zone index (GWPZI) map is generated by using Analytic Hierarchy Process (AHP) from different influencing features, e.g., Land Use/Land Cover (LU/LC), soil (S), geomorphology (GM), hydrogeology (HG), surface geology (SG), recharge rate (RR), drainage density (DD), rainfall (RF), slope (Sl), surface water bodies (SW), lineament density (LD), and Normalized Difference Vegetative Index (NDVI). Recharge rate values are estimated from hydrological water balance model. Overlay weighted sum method is used to integrate all thematic feature maps to generate GWPZ map of the study area. Four zones have been identified for the coastal groundwater basin [very good: 36.39 % (273.53 km2, good: 43.57 % (327.47 km2), moderate: 18.27 % (137.30 km2), and poor: 1.77 % (13.27 km2)]. Areas in north to south-west and south-east direction show very good GWPZ due to the presence of low drainage density. GWPZ map and well yield values show good agreement. Sensitivity analysis reveals that exclusion/absence of rainfall and lineament density increases the poor groundwater potential zones. Omission of hydrogeology, soils, surface geology, and NDVI show maximum increase in good GWPZ. Obtained GWPZ map can be utilized effectively for planning of sustainable agriculture. This analysis demonstrates the potential applicability of the methodology for a general coastal groundwater basin.  相似文献   

8.
昆明市松华坝水源区小流域土壤侵蚀分析   总被引:1,自引:0,他引:1  
以1993-2009年松华坝水源区及昆明市的气象资料、2009年土地利用资料、第二次全国土壤普查资料、水源区牧羊河小流域的径流和泥沙观测资料为基础,用SWAT模型模拟分析了牧羊流域土壤侵蚀的空间差异。结果表明:牧羊河小流域输沙在年际上表现为与年降水量和输沙量峰谷变化具有较好的一致性,在年内表现出,输沙主要集中在6-9月;空间上牧羊河土壤侵蚀模数多年平均值介于21.4~4 586.5 t/(km2·a),且以中轻度为主,土壤侵蚀模数的空间变化与土地利用类型和地形坡度密切相关;土壤侵蚀模数与降水在年际变化上有较好的一致性。这一研究可为水源区土壤侵蚀空间分布的掌握和估算,以及制定有针对性的水土保持措施提供重要的理论依据。  相似文献   

9.
Forested watersheds provide fresh water with best quality and forestry practices play important role on the water production in the watersheds. Therefore, the objective of this study was to investigate the effect of 18 % thinning, which was under the 20 % threshold value reported in the literature on water yield in a forested watershed. Two experimental watersheds with similar ecological conditions in the Belgrad Forest of Istanbul were studied. Following a 6-year calibration period from December 2005 to October 2011, a simple linear regression equation was developed between the monthly streamflows of two watersheds with a significantly high correlation coefficient (r = 0.95). After 18 % of standing volume was removed from one watershed and the other was left untreated as a control, the streamflow was monitored for 2 years starting in January 2012 in both watersheds. The change in the monthly runoff was estimated as the difference between measured and values calculated with the linear regression equation. Average monthly streamflows were about 19, 15 and 10 mm in the control and 21, 20, and 11 mm in the treatment watersheds for calibration, first and second post-treatment periods, respectively. Paired watershed analysis showed that monthly streamflow did not significantly increase in either watershed for the first or the second year after the harvest. The results revealed that thinning intensity had to be greater to increase water yield significantly in this forest ecosystem and the threshold value for a streamflow increase was greater than 18 % for this region.  相似文献   

10.
It is urgent to effectively mitigate flood disasters in humid mountainous areas in southeastern China for the increasing flood risk under urbanization and industrialization. In this study, a rural district with an area of 13.39 km2 that planning to build an industrial park covering an area of 7.98 km2 in Changting was selected to estimate the potential of collectable rainwater and the extent to which runoff volume can potentially be mitigated by rainwater harvesting. In addition, the optimum cistern capacity of a rainwater harvesting system in the planned industrial park was evaluated using daily water balance simulation and cost-efficiency analysis. The results showed that rainwater harvesting in the planned industrial park has great potential. The annually collectable rainwater is approximately 9.8?×?106 m3 and the optimum cistern capacity is determined to be 0.9?×?106 m3. With the optimum cistern capacity, the annual rainwater usage rate is 0.99, showing neither financial savings nor deficits. Rainwater harvesting can reduce 100 % of runoff volume in the cases of critical rainfall storm (50 mm) and annual average maximum daily rainfall (111.2 mm), and 58 % of runoff volume in the case of maximum daily rainfall (233.6 mm), respectively. All surface runoff can be collected and stored in the cisterns when rainfall amount is less than 135.5 mm in a rainstorm event.  相似文献   

11.
Water temperature is a key determinant of biological processes in rivers. Temperature in northern latitude rivers is expected to increase under climate change, with potentially adverse consequences for cold water-adapted species. In Canada, little is currently known about the timescales or magnitude of river temperature change, particularly in large (≥104 km2) watersheds. However, because Canadian watersheds are home to a large number of temperature-sensitive organisms, there is a pressing need to understand the potential impacts of climate change on thermal habitats. This paper presents the results of a study to simulate the effects of climate change on the thermal regime of the lower Saint John River (SJR), a large, heavily impounded, socio-economically important watershed in eastern Canada. The CEQUEAU hydrological-water temperature model was calibrated against river temperature observations and driven using meteorological projections from a series of regional climate models. Changes in water temperature were assessed for three future periods (2030–2034, 2070–2074 and 2095–2099). Results show that mean water temperature in the SJR will increase by approximately ~1 °C by 2070–2074 and a further ~1 °C by 2095–2099, with similar findings for the maximum, minimum and standard deviation. We calculated a range of temperature metrics pertaining to the Atlantic Salmon and Striped Bass, key species within the SJR. Results show that while the SJR will become increasingly thermally-limiting for Atlantic Salmon, the Striped Bass growth season may actually lengthen under climate change. These results provide an insight into how climate change may affect thermal habitats for fish in eastern Canadian rivers.  相似文献   

12.
Emerging as an important issue in the disciplines of landscape ecology and landscape hydrology which inspired it, defining the concept of landscape metrics in a hydrological context has become a challenge to both landscape planners and engineers. Accordingly, the present study addresses the relationships existing between flooding phenomena and landscape metrics (shape index, fractal dimension index, perimeter-area ratio, related circumscribing circle, and contiguity index) of land use/land cover, hydrological soil groups and geological permeability classes. A regionalization approach was adopted employing 39 select catchments (33—4800 km2 in area, 0.47—21 m3 s?1 in mean discharge), located within the southern basin of the Caspian Sea. These catchments were predominantly covered by forest (57.4%), while rangeland, farmland and urban areas accounted for 25.9%, 11.7%, and 1.6%, respectively. Class-level landscape structural metrics of land use/land cover, hydrological soil groups and geological permeability classes have then been served as inputs to stepwise multiple linear regression analysis in an attempt to explain the flood magnitudes. The regression models (0.69?≤?r2 ≤?0.84) suggested that the catchments’ flood magnitude could explicitly be predicted using average measure of the shape and related circumscribing circle indices for the land use/land cover classes and those of hydrologic soil groups and geological permeability classes of the catchments. This indicated that regularity (vs. irregularity) of the landscape, pedoscape, and lithoscape, as represented by the shape index as well as the circumscribing circle index (for elongation and convolution), explained 69–84% of the variation in the flood magnitudes in the catchment.  相似文献   

13.
Pakistan is an agricultural country with an increasing interest for hydropower. Water management problems such as sedimentation and evaporation have been of high concern for surface water reservoirs for many years. Therefore, groundwater storage through subsurface dams could be promising, especially considering the monsoon rainfall and seasonal river flows in Pakistan. The paper aims to develop and test a methodology to locate suitable sites for construction of subsurface dams using spatial multi-criteria analysis (SMCA) in the northern parts of Pakistan. For the study, spatial data on geology, slope, land cover, soil depth and topographic wetness index (TWI) was used. Two weighting techniques, i.e. the analytic hierarchy process (AHP) and the factor interaction method (FIM), were employed and compared. The sensitivity of the two methods as well as of the model parameters was analysed. The suitability map derived from AHP yielded about 3 % (16 km2) of the total area as most suitable, about 4 % (22 km2) as moderately suitable and about 0.8 % (5 km2) as least suitable. The suitability map derived from FIM identified about 2.7 % (14 km2) of the total area as most suitable, about 4 % (22 km2) as moderately suitable and about 1 % (7 km2) as least suitable. The sensitivity analyses suggested that AHP was a more robust weighting technique than FIM and that land cover was the most sensitive factor. The methodology presented here shows promising results and could be used in early planning to locate suitable sites for construction of subsurface dams.  相似文献   

14.
This study analyses the extreme high flows in Jinhua River basin under the impact of climate change for the near future 2011–2040. The objective of this study is to investigate the effect of using the bias corrected RCM outputs as input on the extreme flows by hydrological models. The future projections are obtained through the PRECIS model with resolution of 50 km?×?50 km under climate scenario A1B. The daily precipitation from the PRECIS is bias corrected by distribution based scaling method. Afterwards, three hydrological models (GR4J, HBV and Xinanjiang) are calibrated and applied to simulate the daily discharge in the future. The hydrological models are driven with both bias corrected precipitation and raw precipitation from the PRECIS model for 2011–2040. It is found that after bias correction, the amount, frequency, intensity and variance of the precipitation from the regional climate model resemble the observation better. For the three hydrological models, the simulated annual maximum discharges are higher by using the raw precipitation from PRECIS than by bias corrected precipitation at any return period. Meanwhile, the uncertainties from different models cannot be neglected. The largest difference between three models is about 2,100 m3/s.  相似文献   

15.
The aim of this paper is to develop a physical based distributed runoff model for flood simulation considering spatially and temporally varied rainfall and to evaluate the feasibility of an offline mode under typhoon and convective storm events for Korean watershed. Additionally, an auto-calibration method for initial soil moisture conditions that have an effect on discharge was proposed, and Namgang watershed (2,293 km2) was applied as study site. Distributed rainfall according to grid resolution was generated by using a pre-process program of radar rainfall from the JNI radar. Also, GIS hydrological parameters were extracted from basic GIS data such as DEM, land cover and soil map, and used as input data of the model. The Namgang watershed was divided into square grids of 500 m resolution and calculated by kinematic wave into an outlet through channel networks to evaluate capability of the developed model.  相似文献   

16.
The multi-state Krishna river basin (258 948 km2) serving a population of 70 million is an important basin in peninsular India. The over-exploitation in the basin has led to an increase in hydrological droughts and interstate conflicts. During the last five years drought, domestic and energy water needs were met at the expense of agriculture. In the lower reaches, even the domestic water needs could not be satisfied and required coordination with the upstream projects. The over-exploited basin needs integrated management, together with a proper assessment of water allocation criteria.  相似文献   

17.
Runoff prediction in flood forecasting depends on the use of hydrological simulation models and on the input of accurate precipitation forecasts. Reliability of predictions thus obtained hinges on proper calibration of the model. Moreover, when the model is intended to be used systematically in operational forecasting of streamflows, the calibration process must take into account the variation of the model parameters over time, namely in response to changing weather and hydrological conditions in the basin. The goal of the study was to build a process to adjust, on a daily basis, the simulation model parameters to the current hydrological conditions of the river basin, in order for the model to be run operationally for prediction of the streamflow for the next 10-days period, and, thereby, to forecast the occurrence of flood events. Towards this end, hydrological simulations using the HEC-HMS model were performed, using a 3 h period time step. The present communication focuses on the hydrological model calibration and verification processes and on the evaluation of forecasts’ accuracy. The procedure was applied to a part of the largest (full) Portuguese river basin, the Mondego river basin, corresponding to the Aguieira dam section watershed, which comprises an area of 3070 km2. Four wet periods, associated with the occurrence of flooding, were selected for the calibration and verification of the model, by adjustment of the model parameters. The results of the study aim to define the optimal calibration parameters values to model the observed streamflow for various hydro-meteorological states, thus enabling adequate prediction of flow in flooding situations and proper application of the model in operational flood forecasting.  相似文献   

18.
Streamflow simulation is often challenging in mountainous watersheds because of irregular topography and complex hydrological processes. Rates of change in precipitation and temperature with respect to elevation often limit the ability to reproduce stream runoff by hydrological models. Anthropogenic influence, such as water transfers in high altitude hydropower reservoirs increases the difficulty in modeling since the natural flow regime is altered by long term storage of water in the reservoirs. The Soil and Water Assessment Tool (SWAT) was used for simulating streamflow in the upper Rhone watershed located in the south western part of Switzerland. The catchment area covers 5220 km2, where most of the land cover is dominated by forest and 14 % is glacier. Streamflow calibration was done at daily time steps for the period of 2001–2005, and validated for 2006–2010. Two different approaches were used for simulating snow and glacier melt process, namely the temperature index approach with and without elevation bands. The hydropower network was implemented based on the intake points that form part of the inter-reservoir network. Subbasins were grouped into two major categories with glaciers and without glaciers for simulating snow and glacier melt processes. Model performance was evaluated both visually and statistically where a good relation between observed and simulated discharge was found. Our study suggests that a proper configuration of the network leads to better model performance despite the complexity that arises for water transaction. Implementing elevation bands generates better results than without elevation bands. Results show that considering all the complexity arising from natural variability and anthropogenic influences, SWAT performs well in simulating runoff in the upper Rhone watershed. Findings from this study can be applicable for high elevation snow and glacier dominated catchments with similar hydro-physiographic constraints.  相似文献   

19.
Land use/land cover and climate change can significantly alter water cycle at local and regional scales. Xixian Watershed, an important agricultural area in the upper reach of the Huaihe River, has undergone a dramatic change of cultivation style, and consequently substantial land use change, during the past three decades. A marked increase in temperature was also observed. A significant monotonic increasing trend of annual temperature was observed, while annual rainfall did not change significantly. To better support decision making and policy analysis relevant to land management under climate change, it is important to separate and quantify the effect of each factor on water availability. We used the Soil and Water Assessment Tool (SWAT), a physically based distributed hydrologic model, to assess the impact of Land use and climate changes separately. The SWAT model was calibrated and validated for monthly streamflow. Nash-Sutcliff efficiency (NSE), percentage bias (PBIAS), and coefficient of determination (R 2) were 0.90, 6.3 %, and 0.91 for calibration period and 0.91, 6.9 %, and 0.911 for validation period, respectively. To assess the separate effect of land use and climate change, we simulated streamflow under four scenarios with different combinations of two-period climate data and land use maps. The joint effect of land use and climate change increased surface flow, evapotranspiration, and streamflow. Climate variability increased the surface water and stream-flow and decreased actual evapotranspiration; and land use change played a counteractive role. Climate variability played a dominant role in this watershed. The differentiated impacts of land-use/climate variabilities on hydrological processes revealed that the unapparent change in stream-flow is implicitly because the effects of climate variability on hydrological processes were offset by the effects of land use change.  相似文献   

20.
The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. This study compares the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai River in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy is presented to evaluate the contribution of each reservoir to the total impact. According their contributions, the “highly effective” reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, the degree of impact of the reservoir operation rules on the flood hydrograph are estimated. We find the multi-reservoir system of Huai River has a significant impact on flooding at the Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108 m3 and 1429 m3/s respectively. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号