首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
在1根光管、2根微肋管内对R1234yf两相流动冷凝换热进行实验,实验工况设定为冷凝温度(40±0.5)、(43±0.5)和(45±0.5)℃,质量流速为400~900 kg/(m~2·s),实验段进口制冷剂干度为0.80~0.85、出口制冷剂干度为0.15~0.20,进而从关联式拟合机理上分析各关联式对管内换热系数、压降的预测效果。结果表明:管内换热系数、压降均随流速的增加、冷凝温度的降低而增大,且微肋管内换热系数、压降均大于光管内换热系数及压降,其中,1号微肋管内换热系数最高,2号微肋管内压降最大;对于光管换热系数、压降,Thome关联式和Fridel关联式预测效果最佳,其预测平均误差均在3%以内,而Wang et al关联式和Chisholm et al关联式预测误差最大,其预测平均误差在25%以上;对于微肋管内换热系数、压降,Cavallini et al关联式和Haraguchi et al关联式分别表现出较好的预测效果,其平均预测误差分别-15.43%和-15.68%。  相似文献   

2.
研究R290在管径为3、2和1 mm的水平不锈钢微细通道内,质量流率为73~505 kg/(m~2·s)、热流密度为12. 74~66. 05 k W/m~2、饱和温度为-10~25℃、干度为0~1的范围内的摩擦压降特性,分析R290流动沸腾过程中的摩擦压降变化。结果表明:换热管径尺度微型化使相同条件下的管内压降剧烈上升,质量流率对压降的影响最显著;热流密度的增加对压降的影响很小,几乎为零; R290不同饱和温度物性的改变是造成其不同温度时压降特性差异的主要原因,随着饱和温度的升高,摩擦压降变小;压降随着干度的变化在某个干度存在极值。  相似文献   

3.
通过实验研究了R404A在5 mm微肋管内的流动沸腾换热特性。热流密度为5~25 kW/m~2、质量流速为200~500 kg/(m~2·s)、饱和温度为-5~5℃、干度为0.1~0.9。结果表明:提高饱和温度可以提高换热系数,在0.1~0.3低干度区提升作用较为明显,在0.3~0.6中干度区提升作用逐渐降低;随着质量流速的增大,换热系数呈上升趋势,其对换热系数的影响主要体现在中干度区;热流密度的增大也能够有效提升换热系数,同时使换热系数的峰值提前出现,加速干涸现象的发生。针对本实验数据,修正后的Gungor模型预测精度较高,修正系数为1.372,统计得出平均绝对偏差仅9.30%,高达98.18%的数据偏差度小于±30%。  相似文献   

4.
环保型制冷剂R134A作为R22的替代品已广泛应用于各种制冷技术,在不断探索更完美的制冷剂替代品过程中,微细通道换热技术也逐渐成为近些年的研究热点。为了研究R134A在3 mm紫铜管内沸腾换热过程中的压降特性,在饱和温度为0~20℃、热流密度为5~10 kW/m~2、干度变化在0~1、质量流率在300~500 kg/(m~2·s)的实验工况下进行实验,通过对压力、温度和干度等重要物理参数的控制和试验数据的分析,得出以下结论:压降在相同干度区随质量流率的增大而增大,但在高干度区和低干度区的增幅不同;干度对压降的影响很大程度上与沸腾过程中的流动型态发生变化相关;饱和温度与压降的关系主要呈现负相关;而热流密度在压降影响中的占比则是很小的一部分。  相似文献   

5.
对R290制冷剂在微细通道内的流动沸腾换热特性进行了实验研究。研究管径分别为1和2 mm,热流密度为20~65 k W/m~2,质量流率为100~200 kg/m~2·s,饱和温度为15和25℃,干度范围为0.1~0.9。通过实验数据分析管径、热流密度、质量流率、饱和温度对流动沸腾换热的影响。结果表明:随着管径的下降,换热系数呈现出大幅上升的趋势,其平均增幅为31%;随着热流密度的上升,换热系数呈现出大幅上升的趋势,其平均增幅达到了131%;随着质量流率的上升,换热系数呈现出小幅上升的趋势,其平均增幅为14%;随着饱和温度的上升,大部分换热系数呈现出小幅上升的趋势,其平均增幅为12.6%。  相似文献   

6.
工质在大管径通道内的流动与传热特性对于有机朗肯循环系统冷凝器设计至关重要。本文实验研究了内径为9 mm的水平光滑管内R152a在质量流速131~306 kg/(m2·s)、饱和温度303~323 K下的冷凝流动与传热特性,在实验数据与传统传热流动关联式对比基础上,对关联式进行了修正。结果表明:R152a冷凝传热系数和摩擦压降梯度在干度、质量流速和饱和温度的影响下呈现相同的变化趋势和变化幅度;质量流速增大对传热的强化作用在高干度区域更加明显;修正后的传热和摩擦压降梯度关联式对实验数据的平均预测偏差分别为5.3%和6.3%,预测精度显著提高。  相似文献   

7.
对制冷剂R290在微细圆管内流动沸腾摩擦压降梯度进行了定性的理论分析和定量的实验研究,分析不同影响因素下其变化规律。实验工况:质量流率50~1 020 kg/(m2•s)、热流密度1~70 kW/m2、管径1~3 mm、饱和温度-10~25 ℃、干度0~1。实验结果表明:质量流率的增大和换热管径的减小,都会造成摩擦压降梯度和增长幅度大幅增加;热流密度值的变化不影响摩擦压降梯度,但会影响摩擦压降达到最大值的时间;摩擦压降梯度随着饱和温度和管径的减小而增大;摩擦压降梯度在中低干度时快速增加,在高干度时增速减小趋于平稳,直至达到最大值后缓慢减小。  相似文献   

8.
对R290在5 mm小管径内的凝结换热特性进行了实验。实验工况:热流密度5~10 kW/m~2、质量流率180~250 kg/(m~2·s)、饱和温度40~55℃、管径5 mm。研究了质量流速、饱和温度、热流密度及管型对管内换热系数的影响。研究表明:换热系数随质量流率的增大而增大,随饱和温度的上升而下降,且在干度较大区域,影响更加明显;换热系数随热流密度的增大而增大,且存在最佳热流密度使其达到最大值;相同工况下,内肋管换热系数大于光管,在质量流速低、干度小的区域内肋管的强化效果更优。  相似文献   

9.
以管内径为4 mm的水平光滑铜管,质量流速100~250 kg/(m~2·s),热流密度5~10 kW/m~2,饱和温度分别为40、50、55℃,干度0~1,对R290(丙烷)进行凝结换热实验。结果表明:提高质量流速或增大热流密度,均可增大凝结换热系数;而饱和温度升高则会使凝结换热系数减小;此外,随着凝结过程的进行,干度逐渐降低,凝结换热系数通常也随之减小,仅在热流密度过大时出现先增后减的现象。最后,选取6种经典的凝结换热关联式计算凝结换热系数,并与实验结果对比,Cavallini关联式和Bohdal关联式的预测效果较好。  相似文献   

10.
“球囊夹紧法”取出锁骨下动脉支架推送杆断裂残端一例   总被引:1,自引:0,他引:1  
针对水平光滑管和微肋管,基于FLUENT平台对制冷剂管内沸腾传热特性进行了数值模拟,研究质量流量、热流密度及干度等因素对制冷剂R245fa沸腾换热系数的影响。模拟结果表明:沸腾换热系数随着制冷剂质量流速与热流密度的增加而提高;随着干度的增加,换热系数先增加再降低,并在x=0.7时达到极大值;相比光滑管,微肋管内制冷剂的沸腾传热系数能提高10%~25%。  相似文献   

11.
搭建了氨(R717)沸腾换热测试台,对内径3 mm水平光管内R717的沸腾换热特性进行了测试,分析热流密度、干度、饱和温度及质量流率对沸腾换热及换热方式的影响。实验热流密度15~40 kW/m~2,质量流率40~160 kg/(m~2·s),饱和温度-5、0和5℃,干度0.1~0.9。结果表明:在氨制冷剂管内沸腾换热的过程中,质量流率过低和热流密度过高会导致干涸传热恶化,换热形式由核态沸腾换热向气态氨制冷剂强制对流换热转变,同时也影响干涸的起始干度;在干涸发生前,沸腾换热系数随着干度的增加而增大,逐渐达到峰值;在干涸发生后,传热恶化导致换热系数急剧降低;饱和温度升高会加快核态沸腾气泡生成速率,强化沸腾换热,但干涸的起始干度随着饱和温度升高而降低。  相似文献   

12.
针对水平光滑管和微肋管,基于FLUENT平台对制冷剂管内沸腾传热特性进行了数值模拟,研究质量流量、热流密度及干度等因素对制冷剂R245fa沸腾换热系数的影响。模拟结果表明:沸腾换热系数随着制冷剂质量流速与热流密度的增加而提高;随着干度的增加,换热系数先增加再降低,并在x=0.7时达到极大值;相比光滑管,微肋管内制冷剂的沸腾传热系数能提高10%~25%。  相似文献   

13.
研究了强制对流条件下水平内螺纹管内R404A气液两相流冷凝换热特性,主要讨论油浓度对外径为5 mm的内螺纹管内R404A冷凝换热的影响。实验中油浓度变化范围为0~5%,设置入口平均饱和冷凝温度为40℃,质量流密度变化范围为200~400 kg/(m~2·s),热流密度变化范围为5~45 kW/m~2。实验研究表明:油的出现恶化了换热,在油浓度为1%以下时恶化作用可以忽略,但随着油浓度的增加换热恶化作用越来越明显;对于纯R404A和油浓度为1%的R404A-油混合物,冷凝换热系数随着制冷剂蒸汽干度的降低而逐渐减小;对于油浓度为3%和5%的R404A-油混合物,随着制冷剂蒸汽干度的下降,冷凝换热系数先增加然后逐渐减小,在干度为0.7~0.75之间呈现出一个冷凝换热系数的峰值。同一质量流密度下,换热系数惩罚因子会随着干度的增加而减小,即干度越大,换热恶化作用越大;当质量流密度从200 kg/(m~2·s)增加到400 kg/(m~2·s)时,同一油浓度下油对换热系数的恶化作用相对变小。  相似文献   

14.
在内径为2 mm的水平不锈钢微通道内对制冷剂R290的沸腾换热特性进行了实验研究。实验工况为:制冷剂质量流率分别为150和330 kg/(m~2·s),测试段热流密度分别为43和76 k W/m~2,制冷剂干度的范围为0.1-0.7,测试段制冷剂的饱和温度为15和26℃,测试段制冷剂的入口干度范围为0-0.65。在相同干度情况下,将制冷剂进入测试段前未进行预热而获得的换热系数与制冷剂进入测试段前进行预热后获得的换热系数进行了对比。研究结果表明:制冷剂进入测试段前进行预热会使换热系数产生偏差,偏差的平均值达到了14.2%;在实验范围内,随着制冷剂在测试段入口以及制冷剂在测试段内干度的上升,预热所引起的换热系数偏差将逐步下降。  相似文献   

15.
对内径为1、2、3 mm的水平不锈钢圆管内R290两相流动沸腾换热特性进行了理论与实验研究。分析了热流密度为15~35 kW/m~2、质量流率为76~200 kg/(m~2·s)、饱和温度为16~36℃、干度为0~1时的管内传热特性。研究结果表明:热流密度的增加促进管内核态沸腾,换热得到强化,从而导致换热系数随之增加;质量流率的增加促进管内由核态沸腾换热向对流换热转化,换热系数也随之增加;饱和温度的增加促进管内气泡核心的形成速率加快,强化管内沸腾换热;管径的减小导致微尺度效应增加,从而导致换热系数随之增加;在整个换热过程中干涸前平均换热系数、干涸过程中的平均换热系数分别占总换热系数的40%、37%。  相似文献   

16.
搭建了一个单管冷凝换热特性测试实验系统,研究不同工况下R404A在5 mm小管径管内的冷凝换热系数变化。根据实验数据,建立了R404A在小管径内的冷凝换热模型,并通过偏差验证来论证新换热模型的可靠性。结果表明:R404A在小管径内冷凝换热系数随冷凝饱和温度的上升而降低,随质量流速和干度的上升而上升,随热流密度的变化没有明显改变;当质量流速较大时,冷凝换热系数随着干度的增加,增大的趋势会更为明显,当干度较大时,冷凝换热系数随质量流速的增加,增加的幅度也更大;新关联式可以较好地预测R404A在5 mm内螺纹管的冷凝换热系数,且偏差最大为±20%。  相似文献   

17.
在饱和温度为30~50℃,质量流量为200~600 kg/(m~2·s),干度为0~1.0的工况范围内,对制冷剂R152a在微通道内的流动冷凝换热特性进行了实验研究,主要分析了冷凝温度、管型尺寸、质量流量、干度等参数对微通道内换热系数、压降的影响。实验结果显示:换热系数及压降均随着制冷剂干度、质量流量的增加而增大,随着冷凝温度的增大而减小;管型尺寸对压降的影响不大,但对换热系数具有较大影响。  相似文献   

18.
为研究R410A与R134a在水平光管内的冷凝换热特性,在管内冷凝换热试验台上进行冷凝试验,分析质量流量、冷凝温度、测试水雷诺数Re、管径和制冷剂物性对换热系数和压降的影响。研究表明:换热系数、压降均随着质量流量的增加而变大,随冷凝温度的升高而减小,换热系数随测试水雷诺数Re的增加而减小,而测试水雷诺数Re对压降的影响相对较小;尽管R410A的换热系数随管径的减小而增大,而管径对R134a换热系数的影响并不显著,R134a与R410A的压降均随管径的减小而增大;单位压降换热系数随质量流量的增加而减小; Cavallini et al.关联式可较好预测R410A与R134a在光管内换热系数,而Shah关联式只能用于预测R134a的换热系数。  相似文献   

19.
选用R22、R32、R134a 3种制冷剂,对其在内径为5 mm光管内的流动冷凝换热特性进行实验。实验工况为:制冷剂质量流速500~1 100 kg/(m~2·s),冷凝温度35、40和45℃,冷冻水Re 10 000~40 000,制冷剂在测试管进出口保持2~3℃的过热、过冷度。选取Cavallini、Shah和Dobson and Chato 3个关联式的预测值与3种制冷剂在光管内换热系数实验值进行比较。结果表明:Shah关联式对换热系数的预测精度最高,其预测误差在10%以内。基于Shah关联式对管内换热机制的假设,参考Dobson and Chato关联式拟合机制,提出新关联式,±7%的预测误差,足可证实新关联式较好的预测能力。  相似文献   

20.
为研究近临界压力下R410A在水平螺纹管内的冷凝换热特性,在质量流率为200~800 kg/(m~2·s)、干度为0.1~0.9、冷凝压力比为0.8和0.9时,对3种不同管径的内螺纹铜管(5、7和9.52 mm)进行单管冷凝换热实验。结果表明:冷凝换热系数随着质量流率和干度的增加而增加,冷凝压力越接近临界压力,换热系数越小;利用已有的近临界压力下的换热关联式对波状流进行预测,Garimella关联式结果较好,有87%的数据在±25%的预估偏差率以内;对环状流进行预测,Sunil关联式的预测效果比较好,有79%的数据在±25%的预估偏差率以内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号