首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper presents finite element modeling and a parametric analysis of prototype timber–steel hybrid structures, which are composed of steel moment‐resisting frames and infill wood‐frame shear walls. A user‐defined element was developed to model the behavior of the infill wood shear walls based on the concept of pseudo‐nail model. The element was implemented as a subroutine in a finite element software package abaqus . The model was verified by reversed cyclic test results and further used in a parametric analysis to investigate the lateral performance of timber–steel hybrid shear walls with various structural configurations. The results showed that the infill wall was quite effective within small drift ratios, and the elastic lateral stiffness of the hybrid shear wall increased when a stronger infill wall was used. In order to ensure the structural efficiency of the hybrid shear wall system, it is beneficial to use relatively strong timber–steel bolted connections to make sure the shear force can be transferred effectively between the steel frame and the infill wall. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The lateral performance of timber-steel hybrid shear wall systems with regard to the interaction between the steel frame and the infill wood shear wall was investigated in this paper. A numerical model for the timber-steel hybrid shear wall system was developed and verified against test results. Design parameters, such as the lateral infill-to-frame stiffness ratio and the arrangements of wood-steel bolted connections were studied using the numerical model. Some design recommendations were also proposed based on the parametric analysis. In the hybrid shear wall system, the infill wood wall was found to resist a major part of the lateral load within relatively small wall drifts, and then the steel frame provided more lateral resistance. Under seismic loads, the infill wood wall could significantly reduce the inter-story drift of the hybrid system, and a complementary effect between the infill wood wall and the steel frame was observed through different lateral load resisting mechanisms, which provided robustness to the hybrid shear wall systems.  相似文献   

3.
The SEQD – Steel Earthquake Design – project for earthquake‐resistant residential buildings. The construction material steel is currently mostly applied in highly‐engineered structures like bridges, industrial halls or high‐rise buildings. The SEQD – Steel Earthquake Design – project had the aim of developing a safe and economic solution for small residential buildings in earthquake regions. The basic idea of the system is to combine an engineered steel frame as primary structure with non load‐bearing infill walls from local materials. The new design includes innovative connections between frame elements and special uniaxial couplings between walls and steel frame. Reinforcement of the infill walls is achieved by applying grids from synthetic materials. In October 2004 experimental tests on a prototype structure were carried out in an assembly hall of the Rudolstädter Stahlbau GmbH.  相似文献   

4.
Steel self‐centering moment resisting frames (SC‐MRFs) have been validated experimentally as resilient structural systems, mainly highlighting the minimized residual drift responses but are prone to suffering high‐mode effects. In this paper, the influence of infill configurations on seismic responses of steel SC‐MRFs was first analyzed. A comparison of the previous experimental results was conducted to investigate the effect of infills on the residual drift of steel frames. In the numerical simulation, the infills were modeled as the equivalent strut diagonals, and the force–displacement of the infills was modeled using the combination of Elastic‐No Tension Material and Hysteretic Material offered by the OpenSees program. The seismic analyses of 3‐ and 9‐story SC‐MRFs with and without infills were carried out to analyze the effects of infills on the residual drift responses and high‐mode contribution under the selected ground motions. Finally, the different infill types and infill irregularities on the seismic responses were investigated to obtain general conclusions. The plastic deformations of columns and infills are also compared in the different cases of infill configurations. The results reveal that all infilled cases experience reduced peak‐story drift and force demands at the upper stories.  相似文献   

5.
Building design codes generally provide empirical formulas for estimating the fundamental period. These formulas are developed on the basis of observed periods of real buildings during ground motion, and the period is generally expressed as a function of building height, type (frame or shear wall), etc. In this study, the fundamental period of vibration of a series of regular steel‐framed buildings is studied using finite element modelling and modal eigenvalue analysis including the effect of infill. It has been found that when the models do not include infill, the period given by the analysis is significantly longer than that predicted by the codes equation. However, when the effect of infill is included in the models, the time periods determined from eigenvalue analysis were remarkably close to those predicted by the code formulas. The finding of the study has shown us a practical way to determine the fundamental period of steel frames using rational approaches like modal analysis. After an evaluation of the results, a modified formula has been proposed for estimation of natural period of steel buildings with moment‐resisting frame system having infill. Using the proposed formula, we can estimate natural period of this kind of structural systems more accurately than the one approximated by code formula. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
为研究带阻尼填充墙钢框架的抗震性能,设计了足尺的阻尼填充墙钢框架、普通填充墙钢框架试件和空钢框架试件各1榀,对试件进行了低周反复荷载试验。对比分析了不同试件在低周反复荷载作用下的破坏现象、滞回性能、骨架曲线、刚度退化和耗能能力等。试验结果表明:阻尼填充墙钢框架在相同的荷载作用下墙体的开裂程度比普通填充墙的轻,墙体开裂荷载有一定提高;耗能砂浆和阻尼层起到耗散地震能量的作用,阻尼填充墙钢框架具有良好的位移延性;相对于普通填充墙钢框架墙体形成的“X”剪切裂缝,阻尼填充墙钢框架的墙体裂缝被阻尼层隔断,改变了填充墙的破坏模式;耗能砂浆和阻尼层改变了填充墙的内力分布和裂缝开展方式,提高了阻尼填充墙钢框架的抗震性能。因此,耗能砂浆和阻尼层对填充墙钢框架的受力模式、滞回性能、延性等抗震性能有利,可作为结构设计时参考应用。  相似文献   

7.
Innovative self‐centering energy dissipation braces (SCBs) with super‐elastic shape memory alloy wires are designed and tested on a uniaxial MTS 810 hydraulic servo‐controlled fatigue testing machine. This type of SCB is modeled using finite element method and analyzed by ANSYS software. The test and analysis results show that this type of innovative SCB possesses energy dissipation capacity and self‐centering ability. This paper also describes the multistage working mechanism of the SCBs and exhibits the mechanical behaviors of the braces. The hysteretic behavior of steel frame structures with conventional braces, the buckling‐restrained braces, and the SCBs are compared by conducting low‐frequency cyclic loading. Nonlinear dynamic analyses of steel frame structures with the conventional braces, the buckling‐restrained braces, and the SCBs under frequently occurred earthquake, design basis earthquake, and rare earthquake, respectively, are also performed to compare the seismic responses of steel structures with different braces. The seismic behaviors of these frames are investigated by comparing the peak acceleration, the maximum interstory displacement angle, and the maximum base shear. The results show that the innovative SCB possesses excellent energy dissipation capacity as well as self‐centering ability. Additionally, the innovative SCBs can effectively control the seismic response of the steel frame structure.  相似文献   

8.
Drift design methods based on resizing algorithms are presented to control lateral displacements of steel‐frame shear‐wall systems for tall buildings. Three algorithms for resizing of structural members of the steel‐frame shear‐wall systems are derived by formulating the drift design process into an optimization problem that minimizes lateral displacement of the system without changing the weight of a structure. During the drift design process, cost‐effective displacement participation factors obtained by the energy method are used to determine the amount of material to be modified instead of calculating sensitivity coefficients. The overall structural design model with the drift design method for the steel‐frame shear‐wall systems is proposed and applied to the structural design of three examples. As demonstrated in the examples, the lateral displacement and interstorey drift of a frame shear‐wall system can be effectively designed by the drift design method without the time‐consuming trial‐and‐error process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
为研究水泥聚苯模壳(EPSC)格构式混凝土填充墙钢筋混凝土(RC)框架的抗震性能,对一足尺单层EPSC格构式混凝土填充墙RC框架模型进行了振动台试验。试验中考虑了墙体开洞及墙体与RC框架的连接方式,研究了不同强度地震动作用下模型结构的动力特性、加速度反应、位移反应、层间剪力和动应变反应。研究结果表明:连续强震动作用下EPSC裂缝数量较多,部分格构柱水平开裂,而RC框架未发现损伤,EPSC格构式混凝土填充墙RC框架具有良好的抗震性能;模型最大层间位移角仅为1/513,格构式混凝土墙体的存在极大增强了RC框架的抗侧刚度;墙体与RC框架设置不同间距、长度的拉结筋均能提高墙体的平面外稳定性能,可控制墙体与框架协同工作。  相似文献   

10.
This paper aims to improve the seismic performance of outriggers within supertall buildings and eliminate the defects of obvious degradation of stiffness, low energy dissipation capacity, and large residual deformation after the buckling of traditional diagonal members by presenting a new type of outrigger. The traditional profiled steel diagonal member is replaced with a self‐centering viscoelastic diagonal brace (SC‐VEDB) in the proposed outrigger, providing enhanced energy dissipation and self‐centering capacity. The new SC‐VEDB is composed of the inner and outer steel tubes, viscoelastic materials, and prestressed tendons. Energy dissipation capacity is produced by the shear deformation of viscoelastic materials, whereas prestressed tendons provide the self‐centering capacity. The working mechanism of SC‐VEDB is first theoretically analyzed. Following this, two specimens with a length of 2.2 m were designed, fabricated, and tested under low cyclic reversed loadings within different frequencies and pretension forces. The results confirm that the hysteretic curve of SC‐VEDB has a typical flag shape, which imparts the stable stiffness, good energy dissipation, and self‐centering capacities. The activation force of SC‐VEDB is mainly determined by the initial pretension force, and the post‐activation stiffness predominantly depends on the stiffness of the prestressed tendons. Moreover, SC‐VEDB has better repairability, and the initial hysteretic behavior of the component can be quickly recovered by replacing the damaged prestressed tendons. A refined finite element model for SC‐VEDB is established to predict its hysteretic behavior, and the numerical simulation corresponds well with the experimental results. The maximum relative error of the initial elastic stiffness and ultimate strength is approximately 4.6% and 1.3%, respectively, which verifies the accuracy of the SC‐VEDB numerical simulation method.  相似文献   

11.
L. A. Fülp  D. Dubina 《Thin》2004,42(2):339
The main components to provide earthquake performance of a light-gauge steel house are the shear walls. Understanding shear wall behaviour and finding suitable hysteretic models is important in order to be able to build realistic finite element models and assess structural performance in case of earthquake. As for any building structure expected to exceed its elastic behaviour-range in case of earthquake, the interaction of design capacity, load bearing capacity and structural ductility will influence the performance.In this paper alternative design methods and hysteretic modeling techniques are presented. Based on tests described in Part I, a numerical equivalent model for hysteretic behavior of wall panels working in shear was built and used in 3D dynamic nonlinear analysis of cold-formed steel framed buildings. Preliminary conclusions refer to the effect of over-strength and ductility upon possible earthquake load reduction in case of light-gauge shear wall structures.  相似文献   

12.
An analytical model of the unstiffened steel plate shear wall (SPSW) considering precompression from the adjacent frame columns is proposed and experimentally verified. First, the distribution and transferring of the gravity loads between boundary columns and the infill steel plate was proposed. Second, the shear‐displacement diagram of the SPSW under compression–shear interaction was obtained, and to further consider the global bending deformation, the shear‐displacement diagram of the SPSW under compression–shear–bending interaction was obtained. Third, the load‐carrying capacities and deformations at the state of elastic buckling of the infill steel plate, the yield of Zones I and III, the yield of Zone II, and the yield of the boundary frame were presented. Finally, cyclic loading test on four scaled one story single bay unstiffened SPSWs under different axial forces at the top of the columns was carried out to verify the proposed analytical model. Shear‐displacement relationship, shear capacity, and envelope curves of the specimens were compared with the predicted values. Results indicate that the proposed analytical model can reasonably predict the decrease of the shear load capacity and stiffness of the SPSWs due to the existence of the axial load at the boundary columns.  相似文献   

13.
半刚性连接钢框架-钢板剪力墙结构抗震性能试验研究   总被引:2,自引:1,他引:1  
通过对半刚性连接框架-钢板剪力墙结构在水平反复荷载作用下的试验研究,得到了结构的滞回曲线、延性指标、水平刚度、梁柱应变、转角及各关键部位的变形。从耗能能力、刚度退化、承载力、延性等方面分析该种结构的抗震性能和耗能机理;依据应力分布、梁柱转角研究半刚性节点与钢板剪力墙的相互影响效果;分析结构的内力转换和破坏模式。结果表明:该结构具有良好的延性和耗能性能;半刚性节点在反复荷载作用下没有明显变形,节点刚度退化小,框架和钢板剪力墙协同工作良好;梁柱半刚性连接弱化了结构的整体刚度,框架自身承担的水平荷载有限;破坏模式为内填钢板剪力墙局部撕裂,拉力带作用明显,钢框架柱脚及梁柱半刚性连接部位形成塑性铰,框架整体呈弯曲破坏模式。图12表4参10  相似文献   

14.
钢板-混凝土组合剪力墙由钢框架、内嵌钢板及一侧通过螺栓与之连接的混凝土板组成,其中传统组合剪力墙中混凝土板四边与钢框架直接接触,而改进组合剪力墙中二者之间有一定间距,以避免其在结构侧移较小时发生接触。采用ABAQUS有限元软件分别建立了组合剪力墙的精细有限元模型,研究了其受力性能以及板框相互作用全过程,分析了钢板高厚比对组合剪力墙整体承载力、抗侧刚度以及板框剪力分配等的影响。研究表明:组合剪力墙中混凝土板有效抑制钢板弹性屈曲,钢板主要以剪切屈服承载,对框架柱的附加弯矩较钢板剪力墙明显降低;相比钢板剪力墙,传统组合剪力墙承载力提高25%,抗侧刚度提高10%,混凝土板承载近30%;改进组合剪力墙承载力提高10%,抗侧刚度提高5%,混凝土板基本不承担剪力;随着钢板高厚比的减小,组合剪力墙的承载力与抗侧刚度提高,但两类组合剪力墙之间的差别变小;钢板承载比例不断增大,当钢板过厚时需要防止底层框架过早屈服。  相似文献   

15.
In order to investigate the seismic performance of steel‐reinforced recycled concrete (SRRC) frame with infill wall, low cyclic loading tests on four frames with infill wall and one frame without infill wall were conducted. The failure modes, hysteresis loops, skeleton curves, bearing capacity, ductility, stiffness degradation, and energy dissipation capacity of specimens were analyzed. The seismic performance of SRRC frames with and without infill wall was compared. The influence of the aspect ratio of infill wall, the axial compression ratio of column, and the distance of horizontal reinforcements of infill wall were investigated. Test results show that compared to the SRRC frame without infill wall, the SRRC frame with infill wall had higher bearing capacity and initial stiffness, but faster stiffness degradation and worse energy dissipation capacity. With the increase of aspect ratio of infill wall and axial compression ratio of column, the bearing capacity and initial stiffness of SRRC frame with infill wall increased, whereas the ductility decreased. With the decrease of distance of horizontal reinforcements of infill wall, the initial stiffness and energy dissipation capacity of SRRC frame with infill wall increased. After the infill wall fails under earthquake, the remaining SRRC frame has good seismic performance.  相似文献   

16.
This paper proposed a light-weight buckling restrained steel plate shear wall (XSPSW) to improve the earthquake energy dissipation of unstiffened steel plate shear walls. It consisted of two slidable multiple X-shaped restrainers placed on the either side of a steel infill plate. The two restrainers could continue to provide out-of-plane restraint for infill plates to achieve stable energy dissipating capacity under cyclic reversal loads. Theoretical analyses and numerical simulating analyses have been conducted to investigate the hysteretic behaviors of XSPSWs and the stability of their sub-plates. Based on the analysis results, it could be concluded that the proposed XSPSWs were efficient lateral-load resisting members for the buildings in high seismic regions.  相似文献   

17.
In this study, an efficient analytical model for the dynamic analysis of tall buildings with a shear wall–frame structural system has been proposed. A shear wall–frame structural system usually consists of a core wall showing flexural behavior and a frame presenting shear behavior. Therefore, the deformed shape of the shear wall–frame structural system is shown by the combination of flexural mode and shear mode. To consider this characteristic in developing an efficient analytical model, the effect of shear wall and frame on the dynamic behavior of a tall building with a dual system has been separately investigated. In order to consider the effect of the shear wall in the frame model without shear wall, a rigid body was used instead of the shear wall. Each equivalent model for the separated shear wall part and frame part has been independently developed, and two equivalent models were then combined to create an efficient analytical model for tall buildings with a shear wall–frame structural system. In order to verify the efficiency and accuracy of the proposed method, time history analyses of tall buildings with a shear wall–frame system were performed. With analytical results, it has been confirmed that the proposed method can provide accurate results with significantly reduced computational time and memory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The composite structure of steel frame–reinforced concrete infill wall (CSRC) combines the advantages of steel frames and reinforced concrete shear walls. Reinforced concrete infill walls increase the lateral stiffness of steel frames and reduce seismic demands on steel frames thus providing opportunities to use partially restrained connections. In order to study seismic behavior and load transfer mechanism of CSRC, a two‐story one‐bay specimen was tested under cyclic loads. With that, the main characters such as, strength, stiffness, ductility, energy dissipation, load distribution, performance of steel frames, partially restrained connections and studs, are analyzed and evaluated. The experimental results show that the structure has adequate strength redundancy and sufficient lateral stiffness. The CSRC system has good ductility and energy dissipation capability. Partially restrained connections could enhance ductility and avoid abrupt decreases in strength and stiffness after the failure of infill walls. The composite interaction is ensured by headed studs, which have failed because of low‐cycle fatigue. Steel frames bear 80%–100% of overturning moments, and the remainder is undertaken by infill walls; steel frames and infill walls resisted 10%–20% and 80%–90% of lateral loads, respectively. Furthermore, relevant design recommendations are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents an innovative capacity‐based design procedure that aims to achieve the ideal seismic performance for the composite partially restrained (PR) steel frame‐reinforced concrete (RC) infill wall with concealed vertical slits (PSRCW‐CVS). The proposed method adopts the direct capacity design principles and preselected preferred plastic mechanism such that the RC infill wall undergoes ductile failure prior to the other steel components in the event of a rare‐level earthquake (i.e., earthquake with a 2% probability of exceedance in 50 years). Based on the ultimate resisting capacity of RC infill walls, the free‐body diagrams and simplified design formulae for the surrounding steel components, including the vertical boundary element (VBE), horizontal boundary element (HBE), PR connection, and shear connectors, were proposed. To demonstrate the reasonability of the capacity‐based design procedure, a five‐story PSRCW‐CVS structure was designed according to the proposed design method, followed by a series of nonlinear time history analyses. The overall seismic response of this example was evaluated in terms of story displacement, interstory drift ratio, residual story displacement, and residual interstory drift ratio. The proposed method yielded a more uniform interstory drift ratio distribution along the height of the five‐story PSRCW‐CVS structure. Structural damage was controlled by achieving the preselected preferred plastic mechanism.  相似文献   

20.
传统钢板剪力墙的周边框架和内嵌板均采用普通钢材。随着耗能抗震理念的发展,将内嵌板中的普通钢板替换成低屈服点的铝合金板,组成铝合金板剪力墙。采用数值方法研究铝合金板剪力墙在单调荷载作用下的抗剪性能和在低周反复荷载作用下的滞回性能。研究显示:与普通钢板相比,铝合金板更易发生剪切屈曲不先于剪切屈服,对周边框架的要求更低且耗能性能更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号