首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Random networks of single-walled carbon nanotubes (SWCNTs) were have been grown by chemical vapor deposition on silicon wafers and used for fabricating field-effect transistors (FETs) using symmetric Pd contacts and diodes using asymmetrical Pd and Sc contacts. For a short channel FET or diode with a channel length of about 1 μm or less, the device works in the direct transport regime, while for a longer channel device the transport mechanism changes to percolation. Detailed electronic and photovoltaic (PV) characterizations of these carbon nanotube (CNT) thin-film devices was carried out. While as-fabricated FETs exhibited typical p-type transfer characteristics, with a large current ON/OFF ratio of more than 104 when metallic CNTs were removed via a controlled breakdown, it was found that the threshold voltage for the devices was typically very large, of the order of about 10 V. This situation was greatly improved when the device was coated with a passivation layer of 12 nm HfO2, which effectively moved the threshold voltages of both FET and diode back to center around zero or turned these device to their OFF states when no bias was applied on the gate. PV measurements were then made on the short channel diodes under infrared laser illumination. It was shown that under an illumination power density of 1.5 kW/cm2, the device resulted in an open circuit voltage V OC = 0.21 V and a short circuit current I SC = 3.74 nA. Furthermore, we compared PV characteristics of CNT film diodes with different channel lengths, and found that the power transform efficiency decreased significantly when the device changed from the direct transport to the percolation regime.  相似文献   

2.
Ultraviolet (UV) photodetectors based on ZnO nanostructure/graphene (Gr) hybrid‐channel field‐effect transistors (FETs) are investigated under illumination at various incident photon intensities and wavelengths. The time‐dependent behaviors of hybrid‐channel FETs reveal a high sensitivity and selectivity toward the near‐UV region at the wavelength of 365 nm. The devices can operate at low voltage and show excellent selectivity, high responsivity (RI ), and high photoconductive gain (G). The change in the transfer characteristics of hybrid‐channel FETs under UV light illumination allows to detect both photovoltage and photocurrent. The shift of the Dirac point (V Dirac) observed during UV exposure leads to a clearer explanation of the response mechanism and carrier transport properties of Gr, and this phenomenon permits the calculation of electron concentration per UV power density transferred from ZnO nanorods and ZnO nanoparticles to Gr, which is 9 × 1010 and 4 × 1010 per mW, respectively. The maximum values of RI and G infer from the fitted curves of RI and G versus UV intensity are 3 × 105 A W?1 and 106, respectively. Therefore, the hybrid‐channel FETs studied herein can be used as UV sensing devices with high performance and low power consumption, opening up new opportunities for future optoelectronic devices.  相似文献   

3.
In recent past, for next‐generation device opportunities such as sub‐10 nm channel field‐effect transistors (FETs), tunneling FETs, and high‐end display backplanes, tremendous research on multilayered molybdenum disulfide (MoS2) among transition metal dichalcogenides has been actively performed. However, nonavailability on a matured threshold voltage control scheme, like a substitutional doping in Si technology, has been plagued for the prosperity of 2D materials in electronics. Herein, an adjustment scheme for threshold voltage of MoS2 FETs by using self‐assembled monolayer treatment via octadecyltrichlorosilane is proposed and demonstrated to show MoS2 FETs in an enhancement mode with preservation of electrical parameters such as field‐effect mobility, subthreshold swing, and current on–off ratio. Furthermore, the mechanisms for threshold voltage adjustment are systematically studied by using atomic force microscopy, Raman, temperature‐dependent electrical characterization, etc. For validation of effects of threshold voltage engineering on MoS2 FETs, full swing inverters, comprising enhancement mode drivers and depletion mode loads are perfectly demonstrated with a maximum gain of 18.2 and a noise margin of ≈45% of 1/2 VDD. More impressively, quantum dot light‐emitting diodes, driven by enhancement mode MoS2 FETs, stably demonstrate 120 cd m?2 at the gate‐to‐source voltage of 5 V, exhibiting promising opportunities for future display application.  相似文献   

4.
The main challenge for application of solution‐derived carbon nanotubes (CNTs) in high performance field‐effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution‐derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on‐state current Ion of 290 µA µm?1 (Vds = ?1.5 V and Vgs = ?2 V) and peak transconductance gm of 150 µS µm?1, which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT‐based electronics.  相似文献   

5.
The charge transport through a single ruthenium atom clamped by two terpyridine hinges is investigated, both experimentally and theoretically. The metal‐bis(terpyridyl) core is equipped with rigid, conjugated linkers of para‐acetyl‐mercapto phenylacetylene to establish electrical contact in a two‐terminal configuration using Au electrodes. The structure of the [RuII( L )2](PF6)2 molecule is determined using single‐crystal X‐ray crystallography, which yields good agreement with calculations based on density functional theory (DFT). By means of the mechanically controllable break‐junction technique, current–voltage (IV), characteristics of [RuII( L )2](PF6)2 are acquired on a single‐molecule level under ultra‐high vacuum (UHV) conditions at various temperatures. These results are compared to ab initio transport calculations based on DFT. The simulations show that the cardan‐joint structural element of the molecule controls the magnitude of the current. Moreover, the fluctuations in the cardan angle leave the positions of steps in the IV curve largely invariant. As a consequence, the experimental IV characteristics exhibit lowest‐unoccupied‐molecular‐orbit‐based conductance peaks at particular voltages, which are also found to be temperature independent.  相似文献   

6.
Thin insulating layers are used to modulate a depletion region at the source of a thin‐film transistor. Bottom contact, staggered‐electrode indium gallium zinc oxide transistors with a 3 nm Al2O3 layer between the semiconductor and Ni source/drain contacts, show behaviors typical of source‐gated transistors (SGTs): low saturation voltage (VD_SAT ≈ 3 V), change in VD_SAT with a gate voltage of only 0.12 V V?1, and flat saturated output characteristics (small dependence of drain current on drain voltage). The transistors show high tolerance to geometry: the saturated current changes only 0.15× for 2–50 µm channels and 2× for 9‐45 µm source‐gate overlaps. A higher than expected (5×) increase in drain current for a 30 K change in temperature, similar to Schottky‐contact SGTs, underlines a more complex device operation than previously theorized. Optimization for increasing intrinsic gain and reducing temperature effects is discussed. These devices complete the portfolio of contact‐controlled transistors, comprising devices with Schottky contacts, bulk barrier, or heterojunctions, and now, tunneling insulating layers. The findings should also apply to nanowire transistors, leading to new low‐power, robust design approaches as large‐scale fabrication techniques with sub‐nanometer control mature.  相似文献   

7.
A high‐performance top‐gated graphene field‐effect transistor (FET) with excellent mechanical flexibility is demonstrated by implementing a surface‐energy‐engineered copolymer gate dielectric via a solvent‐free process called initiated chemical vapor deposition. The ultrathin, flexible copolymer dielectric is synthesized from two monomers composed of 1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane and 1‐vinylimidazole (VIDZ). The copolymer dielectric enables the graphene device to exhibit excellent dielectric performance and substantially enhanced mechanical flexibility. The p‐doping level of the graphene can be tuned by varying the polar VIDZ fraction in the copolymer dielectric, and the Dirac voltage (VDirac) of the graphene FET can thus be systematically controlled. In particular, the VDirac approaches neutrality with higher VIDZ concentrations in the copolymer dielectric, which minimizes the carrier scattering and thereby improves the charge transport of the graphene device. As a result, the graphene FET with 20 nm thick copolymer dielectrics exhibits field‐effect hole and electron mobility values of over 7200 and 3800 cm2 V?1 s?1, respectively, at room temperature. These electrical characteristics remain unchanged even at the 1 mm bending radius, corresponding to a tensile strain of 1.28%. The formed gate stack with the copolymer gate dielectric is further investigated for high‐frequency flexible device applications.  相似文献   

8.
Optoelectronic devices based on metal halide perovskites, including solar cells and light‐emitting diodes, have attracted tremendous research attention globally in the last decade. Due to their potential to achieve high carrier mobilities, organic–inorganic hybrid perovskite materials can enable high‐performance, solution‐processed field‐effect transistors (FETs) for next‐generation, low‐cost, flexible electronic circuits and displays. However, the performance of perovskite FETs is hampered predominantly by device instabilities, whose origin remains poorly understood. Here, perovskite single‐crystal FETs based on methylammonium lead bromide are studied and device instabilities due to electrochemical reactions at the interface between the perovskite and gold source–drain top contacts are investigated. Despite forming the contacts by a gentle, soft lamination method, evidence is found that even at such “ideal” interfaces, a defective, intermixed layer is formed at the interface upon biasing of the device. Using a bottom‐contact, bottom‐gate architecture, it is shown that it is possible to minimize such a reaction through a chemical modification of the electrodes, and this enables fabrication of perovskite single‐crystal FETs with high mobility of up to ≈15 cm2 V?1 s?1 at 80 K. This work addresses one of the key challenges toward the realization of high‐performance solution‐processed perovskite FETs.  相似文献   

9.
Currently 2D crystals are being studied intensively for use in future nanoelectronics, as conventional semiconductor devices face challenges in high power consumption and short channel effects when scaled to the quantum limit. Toward this end, achieving barrier‐free contact to 2D semiconductors has emerged as a major roadblock. In conventional contacts to bulk metals, the 2D semiconductor Fermi levels become pinned inside the bandgap, deviating from the ideal Schottky–Mott rule and resulting in significant suppression of carrier transport in the device. Here, MoS2 polarity control is realized without extrinsic doping by employing a 1D elemental metal contact scheme. The use of high‐work‐function palladium (Pd) or gold (Au) enables a high‐quality p‐type dominant contact to intrinsic MoS2, realizing Fermi level depinning. Field‐effect transistors (FETs) with Pd edge contact and Au edge contact show high performance with the highest hole mobility reaching 330 and 432 cm2 V?1 s?1 at 300 K, respectively. The ideal Fermi level alignment allows creation of p‐ and n‐type FETs on the same intrinsic MoS2 flake using Pd and low‐work‐function molybdenum (Mo) contacts, respectively. This device acts as an efficient inverter, a basic building block for semiconductor integrated circuits, with gain reaching 15 at VD = 5 V.  相似文献   

10.
It is shown that the semiconducting performance of field‐effect transistors (FETs) with PDPP4T (poly(diketopyrrolopyrrole‐quaterthiophene)) can be reversibly tuned by UV light irradiation and thermal heating after blending with the photochromic hexaarylbiimidazole compound (p‐NO2‐HABI). A photo‐/thermal‐responsive FET with a blend thin film of PDPP4T and p‐NO2‐HABI is successfully fabricated. The transfer characteristics are altered significantly with current enhanced up to 106‐fold at VG = 0 V after UV light irradiation. However, further heating results in the recovery of the transfer curve. This approach can be extended to other semiconducting polymers such as P3HT (poly(3‐hexyl thiophene)), PBTTT (poly(2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b] thiophene)) and PDPPDTT (poly(diketopyrrolopyrrole‐dithienothiophene)). It is hypothesized that TPIRs (2,4,5‐triphenylimidazolyl radicals) formed from p‐NO2‐HABI after UV light irradiation can interact with charge defects at the gate dielectric–semiconductor interface and those in the semiconducting layer to induce more hole carriers in the semiconducting channel. The application of the blend thin film of PDPP4T and p‐NO2‐HABI is further demonstrated to fabricate the photonically programmable and thermally erasable FET‐based nonvolatile memory devices that are advantageous in terms of i) high ON/OFF current ratio, ii) nondestructive reading at low electrical bias, and iii) reasonably highly stable ON‐state and OFF‐state.  相似文献   

11.
The development of low‐cost, flexible electronic devices is subordinated to the advancement in solution‐based and low‐temperature‐processable semiconducting materials, such as colloidal quantum dots (QDs) and single‐walled carbon nanotubes (SWCNTs). Here, excellent compatibility of QDs and SWCNTs as a complementary pair of semiconducting materials for fabrication of high‐performance complementary metal‐oxide‐semiconductor (CMOS)‐like inverters is demonstrated. The n‐type field effect transistors (FETs) based on I? capped PbS QDs (V th = 0.2 V, on/off = 105, S S‐th = 114 mV dec?1, µ e = 0.22 cm2 V?1 s?1) and the p‐type FETs with tailored parameters based on low‐density random network of SWCNTs (V th = ?0.2 V, on/off > 105, S S‐th = 63 mV dec?1, µ h = 0.04 cm2 V?1 s?1) are integrated on the same substrate in order to obtain high‐performance hybrid inverters. The inverters operate in the sub‐1 V range (0.9 V) and have high gain (76 V/V), large maximum‐equal‐criteria noise margins (80%), and peak power consumption of 3 nW, in combination with low hysteresis (10 mV).  相似文献   

12.
A flexible and stretchable field‐effect transistor (FET) is an essential element in a number of modern electronics. To realize the potential of this device in harsh real‐world conditions and to extend its application spectrum, new functionalities are needed to be introduced into the device. Here, solution‐processable elements based on carbon nanotubes that empower flexible and stretchable FET with high hole‐mobility (µh ≈ 10 cm2 V?1 s?1) and relatively low operating voltages (<8 V) and that retain self‐healing properties of all FET components are reported. The device has repeatable intrinsic and autonomic self‐healing ability, namely without use of any external trigger, enabling the restoration of its electrical and mechanical properties, both after microscale damage or complete cut of the device—for example by a scissor. The device can be repeatedly stretched for >200 cycles of up to 50% strain without a significant loss in its electrical properties. The device is applicable in the form of a ≈3 µm thick freestanding skin tattoo and has multifunctional sensing properties, such as detection of temperature and humidity. With this unprecedented biomimetic transistor, highly sustainable and reliable soft electronic applications can be introduced.  相似文献   

13.
One‐dimensional nanowires (NWs) have been extensively examined for numerous potential nano‐electronic device applications such as transistors, sensors, memories, and photodetectors. The ferroelectric‐gate field effect transistors (Fe‐FETs) with semiconducting NWs in particular in combination with ferroelectric polymers as gate insulating layers have attracted great attention because of their potential in high density memory integration. However, most of the devices still suffer from low yield of devices mainly due to the ill‐control of the location of NWs on a substrate. NWs randomly deposited on a substrate from solution‐dispersed droplet made it extremely difficult to fabricate arrays of NW Fe‐FETs. Moreover, rigid inorganic NWs were rarely applicable for flexible non‐volatile memories. Here, we present the NW Fe‐FETs with position‐addressable polymer semiconducting NWs. Polymer NWs precisely controlled in both location and number between source and drain electrode were achieved by direct electrohydrodynamic NW printing. The polymer NW Fe‐FETs with a ferroelectric poly(vinylidene fluoride‐co‐trifluoroethylene) exhibited non‐volatile ON/OFF current margin at zero gate voltage of approximately 102 with time‐dependent data retention and read/write endurance of more than 104 seconds and 102 cycles, respectively. Furthermore, our device showed characteristic bistable current hysteresis curves when being deformed with various bending radii and multiple bending cycles over 1000 times.  相似文献   

14.
The measurement of ultralow concentrations of heavy metal ions (HMIs) in blood is challenging. A new strategy for the determination of mercury ions (Hg2+) based on an oriented ZnO nanobelt (ZnO‐NB) film solution‐gated field‐effect transistor (FET) chip is adopted. The FET chips are fabricated with ZnO‐NB film channels with different orientations utilizing the Langmuir–Blodgett (L–B) assembly technique. The combined simulation and IV behavior results show that the nanodevice with ZnO‐NBs parallel to the channel has exceptional performance. The sensing capability of the oriented ZnO‐NB film FET chips corresponds to an ultralow minimum detectable level (MDL) of 100 × 10?12 m in deionized water due to the change in the electrical double layer (EDL) arising from the synergism of the field‐induced effect and the specific binding of Hg2+ to the thiol groups (‐SH) on the film surface. Moreover, the prepared FET chips present excellent selectivity toward Hg2+, excellent repeatability, and a rapid response time (less than 1 s) for various Hg2+ concentrations. The sensing performance corresponds to a low MDL of 10 × 10?9 m in real samples of a drop of blood.  相似文献   

15.
Utilizing magnetic field directly modulating/turning the charge carrier transport behavior of field‐effect transistor (FET) at ambient conditions is an enormous challenge in the field of micro–nanoelectronics. Here, a new type of magnetic‐induced‐piezopotential gated field‐effect‐transistor (MIPG‐FET) base on laminate composites is proposed, which consists of Terfenol‐D, a ferroelectric single crystal (PMNPT), and MoS2 flake. When applying an external magnetic field to the MIPG‐FET, the piezopotential of PMNPT triggered by magnetostriction of the Terfenol‐D can serve as the gate voltage to effectively modulate/control the carrier transport process and the corresponding drain current at room temperature. Considering the two polarization states of PMNPT, the drain current is diminished from 9.56 to 2.9 µA in the Pup state under a magnetic field of 33 mT, and increases from 1.41 to 4.93 µA in the Pdown state under a magnetic field of 42 mT and at a drain voltage of 3 V. The current on/off ratios in these states are 330% and 432%, respectively. This work provides a novel noncontact coupling method among magnetism, piezoelectricity, and semiconductor properties, which may have extremely important applications in magnetic sensors, memory and logic devices, micro‐electromechanical systems, and human–machine interfacing.  相似文献   

16.
Electric double layers (EDLs) formed in electrolyte‐gated field‐effect transistors (FETs) induce an extremely large local electric field that gives a highly efficient charge carrier control in the semiconductor channel. To achieve highly efficient triboelectric potential gating on the FET and explore diversified applications of electric double layer FETs (EDL‐FETs), a triboiontronic transistor is proposed to bridge triboelectric potential modulation and ion‐controlled semiconductor devices. Utilizing the triboelectric potential instead of applying an external gate voltage, the triboiontronic MoS2 transistor is efficiently operated owing to the formation of EDLs in the ion‐gel dielectric layer. The operation mechanism of the triboiontronic transistor is proposed, and high current on/off ratio over 107, low threshold value (75 μm), and steep switching properties (20 µm dec?1) are achieved. A triboiontronic logic inverter with desirable gain (8.3 V mm?1), low power consumption, and high stability is also demonstrated. This work presents a low‐power‐consuming, active, and a general approach to efficiently modulate semiconductor devices through mechanical instructions, which has great potential in human–machine interaction, electronic skin, and intelligent wearable devices. The proposed triboiontronics utilize ion migration and arrangement triggered by mechanical stimuli to control electronic properties, which are ready to deliver new interdisciplinary research directions.  相似文献   

17.
Superconducting (SC) devices are attracting renewed attention as the demands for quantum‐information processing, meteorology, and sensing become advanced. The SC field‐effect transistor (FET) is one of the elements that can control the SC state, but its variety is still limited. Superconductors at the strong‐coupling limit tend to require a higher carrier density when the critical temperature (TC) becomes higher. Therefore, field‐effect control of superconductivity by a solid gate dielectric has been limited only to low temperatures. However, recent efforts have resulted in achieving n‐type and p‐type SC FETs based on organic superconductors whose TC exceed liquid He temperature (4.2 K). Here, a novel “ambipolar” SC FET operating at normally OFF mode with TC of around 6 K is reported. Although this is the second example of an SC FET with such an operation mode, the operation temperature exceeds that of the first example, or magic‐angle twisted‐bilayer graphene that operates at around 1 K. Because the superconductivity in this SC FET is of unconventional type, the performance of the present device will contribute not only to fabricating SC circuits, but also to elucidating phase transitions of strongly correlated electron systems.  相似文献   

18.
One of the key challenges of aqueous supercapacitors is the relatively low voltage (0.8–2.0 V), which significantly limits the energy density and feasibility of practical applications of the device. Herein, this study reports a novel Ni–Mn–O solid‐solution cathode to widen the supercapacitor device voltage, which can potentially suppress the oxygen evolution reaction and thus be operated stably within a quite wide potential window of 0–1.4 V (vs saturated calomel electrode) after a simple but unique phase‐transformation electrochemical activation. The solid‐solution structure is designed with an ordered array architecture and in situ nanocarbon modification to promote the charge/mass transfer kinetics. By paring with commercial activated carbon anode, an ultrahigh voltage asymmetric supercapacitor in neutral aqueous LiCl electrolyte is assembled (2.4 V; among the highest for single‐cell supercapacitors). Moreover, by using a polyvinyl alcohol (PVA)–LiCl electrolyte, a 2.4 V hydrogel supercapacitor is further developed with an excellent Coulombic efficiency, good rate capability, and remarkable cycle life (>5000 cycles; 95.5% capacity retention). Only one cell can power the light‐emitting diode indicator brightly. The resulting maximum volumetric energy density is 4.72 mWh cm?3, which is much superior to previous thin‐film manganese‐oxide‐based supercapacitors and even battery–supercapacitor hybrid devices.  相似文献   

19.
In this study, Si-nanoparticle(NP)/Si-nanowire(NW)-based field-effect transistors (FETs) with a top-gate geometry were fabricated and characterized. In these FETs, Si NPs were embedded as localized trap sites in Al2O3 top-gate layers coated on Si NW channels. Drain current versus drain voltage (I DSV DS) and drain current versus gate voltage (I DSV GS) were measured for the Si NP/Si NW-based FETs to investigate their electrical and memory characteristics. The Si NW channels were depleted at V GS = 9 V, indicating that the devices functioned as p-type depletion-mode FETs. The top-gate Si NW-based FETs decorated with Si NPs show counterclockwise hysteresis loops in the I DSV GS curves, revealing their significant charge storage effect.  相似文献   

20.
2D nanomaterials have been actively utilized in non‐volatile resistive switching random access memory (ReRAM) devices due to their high flexibility, 3D‐stacking capability, simple structure, transparency, easy fabrication, and low cost. Herein, it demonstrates re‐writable, bistable, transparent, and flexible solution‐processed crossbar ReRAM devices utilizing graphene oxide (GO) based multilayers as active dielectric layers. The devices employ single‐ or multi‐component‐based multilayers composed of positively charged GO (N‐GO(+) or NS‐GO(+)) with/without negatively charged GO(‐) using layer‐by‐layer assembly method, sandwiched between Al bottom and Au top electrodes. The device based on the multi‐component active layer Au/[N‐GO(+)/GO(‐)]n/Al/PES shows higher ON/OFF ratio of ≈105 with switching voltage of ?1.9 V and higher retention stability (≈104 s), whereas the device based on single component (Au/[N‐GO(+)]n/Al/PES) shows ≈103 ON/OFF ratio at ±3.5 V switching voltage. The superior ReRAM properties of the multi‐component‐based device are attributed to a higher coating surface roughness. The Au/[N‐GO(+)/GO(–)]n/Al/PES device prepared from lower GO concentration (0.01%) exhibits higher ON/OFF ratio (≈109) at switching voltage of ±2.0 V. However, better stability is achieved by increasing the concentration from 0.01% to 0.05% of all GO‐based solutions. It is found that the devices containing MnO2 in the dielectric layer do not improve the ReRAM performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号