首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The use of biologically active dopants in conductive polymers allows the polymer to be tailored for specific applications. The incorporation of nerve growth factor (NGF) as a co‐dopant in the electrochemical deposition of conductive polymers is evaluated for its ability to elicit specific biological interactions with neurons. The electrochemical properties of the NGF‐modified conducting polymers are studied by impedance spectroscopy and cyclic voltammetry. Impedance measurements at the neurobiologically important frequency of 1 kHz reveal that the minimum impedance of the NGF‐modified polypyrrole (PPy) film, 15 kΩ, is lower than the minimum impedance of peptide‐modified PPy film (360 kΩ). Similar results are found with NGF‐modified poly(3,4‐ethylene dioxythiophene) (PEDOT). The microstructure of the conductive polymer films is characterized by optical microscopy and electron microscopy and indicates that the NGF‐functionalized polymer surface topology is similar to that of the unmodified polymer film. Optical and fluorescence microscopy reveal that PC‐12 (rat pheochromacytoma) cells adhered to the NGF‐modified substrate and extended neurites on both PPy and PEDOT, indicating that the NGF in the polymer film is biologically active. Taken together these data indicate that the incorporation of NGF can modify the biological interactions of the electrode without compromising the conductive properties or the morphology of the polymeric film.  相似文献   

2.
We have demonstrated the controlled synthesis of conducting‐polymer microcontainers through the electrochemical generation of surfactant (i.e., β‐naphthalenesulfonic acid, β‐NSA)‐stabilized H2 gas bubbles on the working electrode, followed by electrochemical polymerization of pyrrole around the wall of the “soap‐bubble” template. It was noticed that the density, shape, and wall thickness of the polypyrrole microcontainers thus prepared could be regulated by controlling the electrochemical potential applied for the generation of H2 gas and the experimental conditions (e.g., the surfactant concentration, number of the cyclic voltammetric scanning) for the electropolymerization of pyrrole. By pre‐patterning the working electrode surface with non‐conducting polymers using microcontact printing (μCP) or plasma patterning, we have also produced conducting‐polymer microcontainers in a patterned fashion. Furthermore, potential applications of the patterned and non‐patterned conducting‐polymer microcontainers have been demonstrated; for example, through the encapsulation of appropriate fluorescence‐labeled molecules (e.g., fluorescein cadaverin) into the conducting‐polymer microcontainers by sealing their opened mouths with sequential electropolymerization of pyrrole. The resulting closed microcontainers could then be used for controlled releases.  相似文献   

3.
Many applications of semiconducting conjugated polymers in (opto)electronic devices require the patterning of these functional materials into structures with feature sizes of typically between 1 and 100 μm, ideally by simple and reliable methods. We demonstrate that selective photobleaching, i.e., a spatially resolved change of the chemical structure of the active species by irradiation through an appropriate mask, is an extremely simple and versatile technique that satisfies this need. The process is particularly attractive for structuring oriented materials that exhibit anisotropic properties and is of potential interest for a broad range of applications.  相似文献   

4.
Neural cells respond to topographical cues with alterations in cell growth and neurite sprouting mediated by changes in cell behavior. The interaction of fiber topography with cell adhesion receptors affects how the cells adhere to the surface of fibers and defines cell fate through alterations in the biochemistry, physiology, and morphology of neural cells. Although previous studies suggest topographical features influence neural cell proliferation and neurite sprouting, only a few studies have attempted to assess the use of both electrical and topological cues in piezoelectric scaffolds for nerve regeneration. In this study, variations in the shape‐modified collectors enable tunable surface topographic constructs, from micropatterns to fiber bundle structure. The crystallinity, chemical composition, and quantitative analysis confirm that the interplay between the topological structures of the fibers and the blending of nanocomposite materials is critical for the formation of the β‐phase. It is found that the topographical features and induced electrical characteristics affect cell growth. Also, the intracellular signaling pathway is induced that can provide clues as to how neural cells respond to the topological gradient structure modulated piezoelectric scaffolds. An analysis of the neuron‐specific cytoskeletal related markers further reveals that the specific topographical features piezoelectric fibrous scaffold reinforces neuron‐specific cytoskeletal proteins and microtubule assembly.  相似文献   

5.
The implementation of engineered surfaces presenting micrometer‐sized patterns of cell adhesive ligands against a biologically inert background has led to numerous discoveries in fundamental cell biology. While existing surface patterning strategies allow patterning of a single ligand, it is still challenging to fabricate surfaces displaying multiple patterned ligands. To address this issue we implemented laser scanning lithography (LSL), a laser‐based thermal desorption technique, to fabricate multifaceted, micropatterned surfaces that display independent arrays of subcellular‐sized patterns of multiple adhesive ligands with each ligand confined to its own array. We demonstrate that LSL is a highly versatile “maskless” surface patterning strategy that provides the ability to create patterns with features ranging from 460 nm to 100 μm, topography ranging from ‐1 to 17 nm, and to fabricate both stepwise and smooth ligand surface density gradients. As validation for their use in cell studies, surfaces presenting orthogonally interwoven arrays of 1 μm × 8 μm elliptical patterns of Gly‐Arg‐Gly‐Asp‐terminated alkanethiol self‐assembled monolayers and human plasma fibronectin are produced. Human umbilical vein endothelial cells cultured on these multifaceted surfaces form adhesion sites to both ligands simultaneously and utilize both ligands for lamella formation during migration. The ability to create multifaceted, patterned surfaces with tight control over pattern size, spacing, and topography provides a platform to simultaneously investigate the complex interactions of extracellular matrix geometry, biochemistry, and topography on cell adhesion and downstream cell behavior.  相似文献   

6.
The biocompatible thiol‐functionalized rGOSH/PMASH microcapsules encapsulating nerve growth factor (NGF) are arrayed onto a transparent and conductive substrate, i.e., indium tin oxide (ITO), to integrate electrically stimulated cellular differentiation, electrically controlled NGF release, and topographically rough nano‐surfaces into a 3‐D platform for nerve regeneration. The rGOSH/PMASH microcapsules with microscale topography function not only as an adhesive coating to promote the adhesion of PC12 cells but also as electroactive NGF‐releasing electrodes that stimulate NGF release and accelerate the differentiation of PC12 cells during electrical stimulation. Once electrical treatment is applied, NGF release and electrically enhanced cellular differentiation lead to an obvious increase both in the percentage of cells with neurites and in the neurite length. This length can reach nearly 90 μm within 2 days of cell culture. The average neurite length is significantly increased (four‐fold) after culture on the rGOSH/PMASH microcapsule substrate for 2 days compared with culture on a substrate without an rGOSH/PMASH coating. These multifunctional rGOSH/PMASH microcapsules may be used as potential 3‐D patterned substrates for neural regeneration and neural prosthetics in tissue engineering applications.  相似文献   

7.
采用化学聚合和电化学聚合两步法制作聚吡咯(PPy)铝电解电容器,研究了电化学聚合温度对PPy的微观形貌及聚吡咯铝电解电容器的电容和等效串联电阻Res的影响,结果表明:在10~20℃聚合所得到的聚吡咯铝电解电容器的电性能都比较理想,尤以15℃电化学聚合的为最优,其电容最大为12.6μF,Res最小为32mΩ。并且在此温度条件下制备的PPy致密性高,颗粒大小均匀。  相似文献   

8.
The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

9.
Near‐monodisperse 0.50 μm and 1.0 μm silica particles are surface‐modified using 3‐(trimethoxysilyl)propyl methacrylate (MPS) and subsequently coated by aqueous deposition of an ultrathin polypyrrole (PPy) overlayer to produce PPy‐coated silica particles. The targeted degree of MPS modification and PPy mass loading are systematically varied to optimize the colloidal stability and PPy coating uniformity. MPS surface modification is characterized by contact angle goniometry and the PPy overlayer uniformity is assessed by scanning electron microscopy. HF etching of the silica cores produces hollow PPy shells, thus confirming the contiguous nature of the PPy overlayer and the core–shell morphology of the original particles. Four‐point probe measurements and XPS studies indicate that the electrical conductivity of pressed pellets of PPy‐coated silica particles increases with PPy surface coverage. Colloidal stabilities of the bare, MPS‐modified, and PPy‐coated silica particles in aqueous solution are assessed using disk centrifuge photosedimentometry. MPS surface modification results in weak flocculation, with subsequent PPy deposition causing further aggregation. In contrast, white light aerosol spectrometry indicates a relatively high degree of dispersion for PPy‐coated silica particles in the gas phase. Such PPy‐coated silica particles are expected to be useful mimics for silica‐rich micrometeorites and may also serve as a model highly absorbing aerosol.  相似文献   

10.
A novel patterning technique of conductive polymers produced by vapor phase polymerization is demonstrated. The method involves exposing an oxidant film to UV light which changes the local chemical environment of the oxidant and subsequently the polymerization kinetics. This procedure is used to control the conductivity in the conjugated polymer poly(3,4‐ethylenedioxythiophene):tosylate by more than six orders of magnitude in addition to producing high‐resolution patterns and optical gradients. The mechanism behind the modulation in the polymerization kinetics by UV light irradiation as well as the properties of the resulting polymer are investigated.  相似文献   

11.
The production of micrometer and sub‐micrometer features over large areas for use in electronic and optical structures remains challenging, particularly as requirements extend beyond traditional electronic materials to ceramics and polymers. We demonstrate that the technique of microcutting allows patterning of such structures on polymer substrates of these materials as exemplified by the ceramic indium tin oxide (ITO) and the conducting polymer poly(3,4‐ethylenedioxythiophene) (PEDOT). Given the brittleness of most ceramics such as ITO, this is very unexpected, but we find no evidence for microcracking and find high electrical conductivities in narrow tracks (∼2.5 μm) that are separated by less than 500 nm. The micrometer‐scale patterns also act as very efficient alignment layers for liquid crystals (LCs), and allow complex alignment patterns.  相似文献   

12.
Fabrication of hierarchical materials, with highly optimized features from the millimeter to the nanometer scale, is crucial for applications in diverse areas including biosensing, energy storage, photovoltaics, and tissue engineering. In the past, complex material architectures have been achieved using a combination of top‐down and bottom‐up fabrication approaches. A remaining challenge, however, is the rapid, inexpensive, and simple fabrication of such materials systems using bench‐top prototyping methods. To address this challenge, the properties of hierarchically structured electrodes are developed and investigated by combining three bench‐top techniques: top‐down electrode patterning using vinyl masks created by a computer‐aided design (CAD)‐driven cutter, thin film micro/nanostructuring using a shrinkable polymer substrate, and tunable electrodeposition of conductive materials. By combining these methods, controllable electrode arrays are created with features in three distinct length scales: 40 μm to 1 mm, 50 nm to 10 μm, and 20 nm to 2 μm. The electrical and electrochemical properties of these electrodes are analyzed and it is demonstrated that they are excellent candidates for next generation low‐cost electrochemical and electronic devices.  相似文献   

13.
Conductive core–sheath nanofibers are prepared by a combination of electrospinning and aqueous polymerization. Specifically, nanofibers electrospun from poly(ε‐caprolactone) (PCL) and poly(L ‐lactide) (PLA) are employed as templates to generate uniform sheaths of polypyrrole (PPy) by in‐situ polymerization. These conductive core–sheath nanofibers offer a unique system to study the synergistic effect of different cues on neurite outgrowth in vitro. It is found that explanted dorsal root ganglia (DRG) adhere well to the conductive core–sheath nanofibers and generate neurites across the surface when there is a nerve growth factor in the medium. Furthermore, the neurites can be oriented along one direction and enhanced by 82% in terms of maximum length when uniaxially aligned conductive core–sheath nanofibers are compared with their random counterparts. Electrical stimulation, when applied through the mats of conductive core–sheath nanofibers, is found to further increase the maximum length of neurites for random and aligned samples by 83% and 47%, respectively, relative to the controls without electrical stimulation. Together these results suggest the potential use of the conductive core–sheath nanofibers as scaffolds in applications such as neural tissue engineering.  相似文献   

14.
The first high‐resolution full‐color OLED display based on a direct photolithographic process is presented by Meerholz and co‐workers on p. 191. The cover shows a schematic illustration of the fabrication process, a fluorescence microscope picture demonstrating the micrometer resolution capability of the process, and a picture of the first prototype displaying a test image. Electroluminescent polymers with photoresist‐like properties are the basis of the new process (chemical structure shown in the background). The first full‐color polymer organic light‐emitting diode (OLED) display is reported, fabricated by a direct photolithography process, that is, a process that allows direct structuring of the electroluminescent layer of the OLED by exposure to UV light. The required photosensitivity is introduced by attaching oxetane side groups to the backbone of red‐, green‐, and blue‐light‐emitting polymers. This allows for the use of photolithography to selectively crosslink thin films of these polymers. Hence the solution‐based process requires neither an additional etching step, as is the case for conventional photoresist lithography, nor does it rely on the use of prestructured substrates, which are required if ink‐jet printing is used to pixilate the emissive layer. The process allows for low‐cost display fabrication without sacrificing resolution: Structures with features in the range of 2 μm are obtained by patterning the emitting polymers via UV illumination through an ultrafine shadow mask. Compared to state‐of‐the‐art fluorescent OLEDs, the display prototype (pixel size 200 μm × 600 μm) presented here shows very good efficiency as well as good color saturation for all three colors. The application in solid‐state lighting is also possible: Pure white light [Commision Internationale de l'Éclairage (CIE) values of 0.33, 0.33 and color rendering index (CRI) of 76] is obtained at an efficiency of 5 cd A–1 by mixing the three colors in the appropriate ratio. For further enhancement of the device efficiency, an additional hole‐transport layer (HTL), which is also photo‐crosslinkable and therefore suitable to fabricate multilayer devices from solution, is embedded between the anode and the electroluminescent layer.  相似文献   

15.
Within the past years there has been much effort in developing and improving new techniques for the nanoscale patterning of functional materials used in promising applications like nano(opto)electronics. Here a high‐resolution soft lithography technique—nanomolding in capillaries (NAMIC)—is demonstrated. Composite PDMS stamps with sub‐100 nm features are fabricated by nanoimprint lithography to yield nanomolds for NAMIC. NAMIC is used to pattern different functional materials such as fluorescent dyes, proteins, nanoparticles, thermoplastic polymers, and conductive polymers at the nanometer scale over large areas. These results show that NAMIC is a simple, versatile, low‐cost, and high‐throughput nanopatterning tool.  相似文献   

16.
A new method for subcellular‐sized protein patterning on a SiOx substrate is demonstrated by dip‐pen nanolithography printed aldehyde‐terminated alkylsilane template. The aldehyde‐silane template is stable and durable; for example, subcellular scaled IgG protein array can be obtained using one‐year old aldehyde‐silane template. Moreover, single cell patterning is successfully carried out by extracellular material (ECM) protein microarray and nanoarray fabricated on an aldehyde‐silane template. With more than half of chance, single‐ or double‐cells are successfully attached on fibronectin protein nanoarrays in 21 × 21 μm 2 (7 × 7 dot array) and 42 × 42 μm2 (14 × 14 dot array). The fibronectin nanoarray with small area (21 × 21 μm2) shows the more rate of single cell attachment. Therefore, it is also demonstrated that cell patterning can be controlled by adjusting the nanostructure of ECM materials.  相似文献   

17.
Propylenedioxythiophene (ProDOT) polymers are synthesized using an oxidative polymerization route that results in methacrylate substituted poly(ProDOTs) having a Mn of 10–20 kDa wherein the methacrylate functionality constitutes from 6 to 60% of the total monomer units. Solutions of these polymers show excellent film forming abilities, with thin films prepared using both spray‐casting and spin‐coating. These polymers are demonstrated to crosslink upon UV irradiation at 350 nm, in the presence of an appropriate photoinitiator, to render the films insoluble to common organic solvents. Electrochemical, spectroelectrochemical, and colorimetric analyses of the crosslinked polymer films are performed to establish that they retain the same electrochromic qualities as the parent polymers with no detriment to the observed properties. To demonstrate applicability for multi‐film processing and patterning, photolithographic patterning is shown, as is desired for fully solution processed and patterned devices.  相似文献   

18.
Schottky barrier single electron transistors (SB‐SETs) and Schottky barrier single hole transistors (SB‐SHTs) are fabricated on a 20‐nm thin silicon‐on‐insulator substrate incorporating e‐beam lithography and a conventional CMOS process technique. Erbium‐ and platinum‐silicide are used as the source and drain material for the SB‐SET and SB‐SHT, respectively. The manufactured SB‐SET and SB‐SHT show typical transistor behavior at room temperature with a high drive current of 550 μA/μm and ?376 μA/μm, respectively. At 7 K, these devices show SET and SHT characteristics. For the SB‐SHT case, the oscillation period is 0.22 V, and the estimated quantum dot size is 16.8 nm. The transconductance is 0.05 μS and 1.2 μS for the SB‐SET and SB‐SHT, respectively. In the SB‐SET and SB‐SHT, a high transconductance can be easily achieved as the silicided electrode eliminates a parasitic resistance. Moreover, the SB‐SET and SB‐SHT can be operated as a conventional field‐effect transistor (FET) and SET/SHT depending on the bias conditions, which is very promising for SET/FET hybrid applications. This work is the first report on the successful operations of SET/SHT in Schottky barrier devices.  相似文献   

19.
The metastable β‐phase morphology, inherent to most polyfluorene homo‐polymers, is of interest due to its superior optical and electrical characteristics compared to its amorphous analogue. Here, a polyfluorene with vinyl‐ether‐functionalized aliphatic side‐chains that allow crosslinking is reported. It is demonstrated that the previously induced conformational morphology is preserved in the resulting polyfluorene network, which enables subsequent wet thin‐film processing. Electron‐beam lithography provides a means for sub‐(optical)‐wavelength patterning of the crosslinkable polyfluorene films. As a specific demonstration, optically‐pumped distributed‐feedback (DFB) lasers made from surface‐relief gratings in amorphous and β‐phase polyfluorene are presented. By backfilling gratings of one morphology by the other, devices are demonstrated that exhibit lasing at two wavelengths with a threshold (<1 μJ cm?2) at least an order of magnitude lower compared with previous data.  相似文献   

20.
Polymers are widely used in the microelectronics industry as thin-film interlevel dielectrics layers between metal lines, as passivation layers on semiconductor devices and in various packaging applications. As multiple layers of polymer and patterned metal are constructed, the ability of these polymers to planarize topographical features becomes increasingly important. In this study, the degree of planarization (DOP) for five commercially available polymers has been examined for three different structural configurations with the intent of simulating practical applications. Specifically, this study investigates single layer planarization, multiple coat planarization, and planarization of metal lines patterned on a polymer base. This study also examines the effects of orientation of the metal structure to polymer flow during spin casting and location on the wafer. The polymers are selected to investigate different polymer chemistries frequently used in the microelectronics industry. The underlying structures were fabricated using standard photolithography and electroplating techniques. Feature dimensions include 25-200 μm line spacings and widths with the polymer overcoat thickness being twice the height of the underlying structures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号