首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
本试验研究了超细高活性矿物掺合料(超细掺合料)与硅灰以单掺、复掺的方式制备超高性能混凝土(UHPC),分析了复掺不同掺量超细掺合料对UHPC的工作性、力学性能、水化热和收缩性能的影响。结果表明:UHPC流动性随超细掺合料掺量的增加而增加,跳桌流动度最高为275 mm;将超细掺合料与质量分数为10%的硅灰以复掺的方式制备UHPC时,随超细掺合料掺量的增加,UHPC抗折强度先增加后降低,抗压强度先增加后趋于平稳,最大抗折强度和抗压强度分别为25.9 MPa和150.0 MPa;超细掺合料与质量分数为10%的硅灰复掺制备的UHPC水化热随超细掺合料掺量增加,先增大后减小;复掺质量分数为10%的超细掺合料与质量分数为10%的硅灰制备的UHPC早期收缩量最小,比单掺质量分数为20%的硅灰制备的UHPC低50.92%。  相似文献   

2.
本文使用再生粗骨料全部替代天然粗骨料,用粉煤灰分别替代20%、30%、40%、50%和70%(质量分数)水泥,制备了不同水胶比(0.36、0.40和0.45)的全再生自密实混凝土,通过抗折强度试验和抗压强度试验,分析了粉煤灰掺量和水胶比对全再生自密实混凝土性能的影响规律,得到了粉煤灰的合理掺量,提出了适用于全再生自密实混凝土抗折强度的计算公式。结果表明:当粉煤灰掺量由20%增至40%时,所有全再生自密实混凝土拌合物的坍落扩展度呈先增加后降低趋势,且均表现出良好的间隙通过能力,但混凝土拌合物扩展时间T500受粉煤灰的影响不显著;随着粉煤灰掺量增加,全再生自密实混凝土的抗压强度和抗折强度均呈先增加后降低趋势,抗折强度受粉煤灰掺量的影响程度要高于抗压强度;全再生自密实混凝土抗压强度和抗折强度受水胶比的影响程度相同;综合粉煤灰掺量对全再生自密实混凝土工作性能和力学性能的影响,建议粉煤灰对水泥的取代率为30%。  相似文献   

3.
分析了当前普通水泥混凝土路面裂缝和断板的问题,在此基础上验证了不同掺量抗折剂的混凝土与基准混凝土的抗折强度和抗裂性能,随着抗折剂掺量的增加,混凝土抗折强度先增大后降低,当掺量3%时,混凝土抗折性能最大;通过应力强度因子分析验证,抗折剂掺量3%时,混凝土抗裂应力增进率达到最大值。  相似文献   

4.
任劲滔  胡冗冗  黄炜  权文立 《硅酸盐通报》2023,(12):4254-4261+4282
在普通砂加气混凝土的基础上,以金尾矿砂为硅质材料,玄武岩纤维和气凝胶为增强材料,制备增强型砂加气混凝土,分析玄武岩纤维掺量、玄武岩纤维长度和气凝胶掺量对增强型砂加气混凝土性能的影响。结果表明:随着玄武岩纤维掺量(0.1%、0.2%、0.3%、0.4%,质量分数)和玄武岩纤维长度(3、6、9、12 mm)的增加,砂加气混凝土的干密度、抗压强度、抗折强度以及导热系数随之增大,玄武岩纤维的最优掺量为0.3%,最优长度为6 mm,此时砂加气混凝土的抗压强度较未掺纤维时提高9.64%,抗折强度较未掺纤维时提高21.42%,力学性能较好,导热系数变化较小;气凝胶的最佳掺量为1.5%,此时导热系数降低10.68%,抗压强度、抗折强度略有降低,但仍满足相关强度要求。  相似文献   

5.
苏捷  史才军  秦红杰  张祥 《硅酸盐学报》2020,(11):1740-1746
通过3个强度等级、2种钢纤维类型和4组钢纤维掺量超高性能混凝土(UHPC)小梁试件的抗折试验,研究了强度等级、钢纤维类型和体积掺量对超高性能混凝土抗折强度及尺寸效应的影响。结果表明:随UHPC强度等级的增加,小梁试件抗折强度尺寸效应趋于明显,R160级试件抗折强度尺寸效应约为R120试件的1.26倍。钢纤维掺量对UHPC抗折强度尺寸效应有较大影响,钢纤维掺量越大,尺寸效应越明显,掺入3%(体积分数)平直型钢纤维和端勾型钢纤维的R120级UHPC小梁试件抗折强度尺寸效应比未掺加钢纤维的试件提高了71%和78%。建议了UHPC抗折强度尺寸换算系数,提出了UHPC抗折强度尺寸效应律计算公式。  相似文献   

6.
研究多壁碳纳米管(MWCNTs)掺量(0wt%、0.05wt%、0.08wt%、0.10wt%、0.20wt%)对碳纳米管水泥基复合材料(CNT/CC)高温力学性能的影响.分别测试了常温时以及200℃、400℃、600℃和800℃高温后CNT/CC净浆试件的质量损失、抗折强度和抗压强度.结果表明:MWCNTs的加入能够降低水泥基体内部蒸汽压和温度梯度,有效地提高水泥基体抗高温爆裂能力.MWCNTs的掺入可在一定程度上降低水泥基材料的高温质量损失,但掺量过大时由于催化剂的热分解,质量损失会有所增加.热作用时,MWCNTs表面和端部易产生一些亲水基团和缺陷位,在一定程度上缓解了水泥基复合材料高温性能的劣化.800℃后,CNT/CC的相对残余抗折强度和相对残余抗压强度分别约为30% ~35%和45% ~50%.  相似文献   

7.
硅溶胶对水泥基材料微观结构和力学性能的影响   总被引:2,自引:1,他引:1  
叶青 《硅酸盐学报》2008,36(4):425-430
用在水泥基材料试件中插入玻璃板的方法进行黏结强度实验,结合 X射线衍射和扫描电子显微镜分析了硅溶胶对水泥基材料微观结构和力学性能的影响.结果表明:随着硅溶胶掺量的增加,水泥硬化浆体强度、水泥硬化浆体与玻璃板界面黏结强度和混凝土强度均随之增加;但当硅溶胶掺量(质量分数)大于1.50%时,各项强度值不再增加.在1.5%硅溶胶掺量和28 d龄期时,掺矿渣的水泥硬化浆体与玻璃板界面黏结强度比不掺硅溶胶时提高了40%;掺矿渣的水泥混凝土抗折强度和抗压强度分别提高了20%和15%.硅溶胶的掺入能有效地降低水泥硬化浆体与玻璃板界面中氢氧化钙晶体的取向程度,可明显减少界面中氢氧化钙晶体的数量并细化其尺寸,减小界面过渡区的厚度.  相似文献   

8.
在普通硅酸盐水泥砂浆中加入济钢产超细矿渣,研究不同掺量的超细矿渣对水泥浆体凝结时间及胶砂流动度、强度的影响.实验结果表明:随着掺量的提高,水泥浆体的初凝时间延长,终凝时间缩短;胶砂流动度随超细矿渣掺量的增大而减小;随超细矿渣掺量的增大,水泥胶砂的3d和28 d强度提高,当质量分数掺量为30%时,水泥砂浆28 d的抗折、抗压强度达到最大,分别达到9.65 MPa和68.44 MPa.  相似文献   

9.
通过不同体积掺量玄武岩纤维(0.2%、0.4%和0.6%)的掺玄武岩纤维高强高钛重矿渣混凝土和普通高钛重矿渣的抗压、劈裂抗拉和抗折来分析玄武岩纤维的不同体积掺量对掺玄武岩纤维高强高钛重矿渣混凝土力学性能的影响。结果表明,玄武岩纤维可显著改善试件劈裂抗拉性能和抗折性能,对抗压性能影响不大。抗压强度和抗折强度随玄武岩纤维掺量的增加呈先增加后降低趋势,纤维掺量为0.4%时达到最大值,28d强度较基准混凝土分别增长了14.26%和28.89%,而劈裂抗拉强度随玄武岩纤维掺量的增加而持续增加,纤维掺量为0.6%时,28d强度较基准混凝土增长了39.24%。该种纤维混凝土可解决混凝土开裂的施工问题。  相似文献   

10.
本文通过在硅酸盐水泥基灌浆料中掺入不同长度及掺量的短切玄武岩纤维,研究其对灌浆料力学性能的影响。试验结果表明:短切玄武岩纤维的掺入,灌浆料的流动度从336 mm降至260 mm,但灌浆料各龄期的抗折强度及抗压强度均得到了提升,早期抗折强度提升最为明显。短切玄武岩纤维在水泥基灌浆料中的最佳掺量为0.15%,最佳长度为9mm,抗折强度和抗压强度分别可以达到17.6 MPa和85.4 MPa。  相似文献   

11.
为了促进建筑垃圾的再生利用,通过再生微粉替代部分水泥制备干混砂浆,探究再生微粉细度、掺量和复掺比对砂浆稠度、抗压强度、抗折强度和显微结构的影响规律。结果表明,随着再生微粉颗粒细度的减小,砂浆稠度整体呈下降趋势,28 d抗压、抗折强度均呈增加趋势,研磨40 h时,其强度达到最大值。随着再生微粉掺量的增加,砂浆稠度呈下降趋势,28 d抗压、抗折强度呈先增加后降低的趋势,当掺量为10%(质量分数)时,抗压强度达到最大值。随着再生微粉复掺比(质量比)的增大,砂浆稠度呈下降趋势,砂浆的28 d抗压、抗折强度呈先增加后降低的趋势,当研磨20 h的微粉与未研磨微粉复掺比为6∶4时,其抗压强度达到最大值。  相似文献   

12.
通过宏观力学性能、化学收缩、pH值、氯离子浓度等测试和SEM、XRD等微观表征研究粉煤灰掺量对海水海砂高性能混凝土性能的影响。结果表明:为维系钢筋钝化膜稳定,高温蒸养时粉煤灰掺量不宜大于30%(质量分数,下同),标养时粉煤灰掺量不宜大于50%;海水海砂高性能混凝土中游离Cl-浓度随养护时间波动,前期先升高后骤降,后期缓慢增加,标养条件下Cl-浓度明显低于高温蒸养条件下;海水海砂高性能混凝土具有早强性,其强度随粉煤灰掺量增加大致呈下降趋势,高温蒸养可明显提高混凝土抗折、抗压强度;粉煤灰掺量越多,残留的未水化颗粒越多,高温蒸养可有效改善混凝土微观结构,提高致密性;粉煤灰掺量过多或过少均会增加硅酸盐水泥体系的化学收缩,粉煤灰掺量为30%和40%时混凝土化学收缩值较小。  相似文献   

13.
戚瑞  田威  王峰  赵丙伟 《硅酸盐通报》2019,38(3):653-658
为了研究不同掺量以及不同直径多壁碳纳米管(MWCNTs)对水泥基试样力学性能的影响,分别采用直径为10~20 nm、20~40 nm、40~60 nm的三种MWCNTs制备了不同掺量的MWCNTs水泥基试样,并对水泥基试样进行了力学性能试验.通过孔径分析仪(MIP)和扫描电子显微镜(SEM)分别对不同直径及不同掺量的MWCNTs水泥基试样的孔隙结构和微观结构进行了研究.试验结果表明:使用相同直径MWCNTs的水泥基试样中,抗压强度和抗折强度分别在较低掺量为0.1wt%和0.2wt%时提升最为明显,孔隙率随着MWCNTs掺量的增加而增大;而使用相同MWCNTs掺量的水泥基试样中,MWCNTs直径为10~20 nm的抗压强度提升最为明显,直径为40~60 nm的抗折强度提升最为明显,孔隙率随着MWCNTs直径的增大而增大.另外通过扫描电镜分析还发现,不同直径不同掺量的MWCNTs在水泥基试样中起到了桥联和拔出作用,能有效的阻止裂缝的传播和发展.  相似文献   

14.
本文研究了不同长度聚甲醛(POM)纤维单掺和混掺对砂浆流动度、抗折强度、抗压强度、弯曲韧性及干燥收缩的影响,并通过扫描电镜观测了其微观结构。研究发现,砂浆流动度随POM纤维长度和掺量增大而下降,混掺纤维比单掺对砂浆流动度的影响更小。POM纤维能有效提高砂浆的抗折强度,但掺量超过0.6%(体积分数,下同)时增强效果减弱,与未掺纤维试样相比,0.6%掺量的6 mm纤维对试样28 d抗折强度提升最高,为14.67%,抗压强度随纤维掺量增加而降低。12 mm纤维比6 mm及混掺对试样弯曲韧性提升更明显,最大提高49.43%。纤维的掺入可显著降低试样的干燥收缩率,且随纤维掺量增加,试样90 d干燥收缩率先减小后增大。与未掺纤维试样相比,0.6%掺量的6 mm纤维试样90 d干燥收缩率下降最多,为27.39%。混掺POM纤维在掺量0.6%以上时仍可显著提升砂浆的抗折强度并减小干燥收缩率。  相似文献   

15.
研究了在常温养护条件下,无机早强剂碳酸锂(Li2 CO3)、纳米材料纳米碳酸钙(NC)对超高性能混凝土(UHPC)流动性能和早期力学性能的影响,并采用SEM、XRD对其早期水化产物形貌及水泥水化反应程度进行探讨.结果表明:单掺时,Li2CO3最佳掺量为0.100%(质量分数),与未掺试件相比,1 d抗压强度提升44%,1 d抗折强度提高28%;NC最佳掺量为3%(质量分数),1 d抗压强度提高45%,1 d抗折强度提高24%.0.100%(质量分数)的Li2 CO3与3%(质量分数)的NC复掺时,1 d抗压和抗折强度分别为72.1 MPa和13.9 MPa,与对照组相比分别增加了68%和38%,28 d的抗压和抗折强度分别为132.2 MPa、24.5 MPa,且强度无损失.在常温条件下可制备出高早强UHPC.  相似文献   

16.
研究了用50%~80%(质量分数,下同)超细矿渣粉和20%~50%的P·Ⅱ42.5水泥配合的胶凝材料的性能及添加磷石膏对其性能的影响.结果表明:用50%~80%超细矿渣粉等量取代水泥,对水泥的凝结时间影响不大,但会较大幅度降低其3 d和7 d的抗压强度和抗折强度:而超细矿渣粉的取代量为50%~60%时,胶凝材料的28d强度与硅酸盐水泥持平甚至超过后者,并可减小胶凝材料的早期收缩:掺加超细矿渣粉量的2%~3%的磷石膏可以较大幅度提高大掺量超细矿渣粉胶凝材料的早期强度,而对其后期强度和干缩性能无不利影响,对大掺量超细矿渣粉胶凝材料硬化后期浆体水化产物和结构也无显著影响.  相似文献   

17.
设计了不同掺量硅灰等质量代替水泥作为胶凝材料制备混凝土,通过压力试验和抗氯离子渗透性试验分别对混凝土的强度和抗渗性能进行了研究。结果表明:随着硅灰掺量的增加,混凝土拌合物坍落度逐渐降低,而混凝土凝结时间逐渐缩短;混凝土28d强度随着硅灰掺量的增加先增长后降低,掺量在10%左右时效果最好,抗压强度此时可提高11%,而抗折强度提高效果较抗压强度略低;混凝土的氯离子扩散系数随着硅灰掺量的增加而减小,掺量在20%时抗渗性能可提高80%。研究成果可提高人们对硅灰混凝土的认识。  相似文献   

18.
通过净浆凝结时间、水化热以及砂浆流动度和强度等试验,研究了八水合氢氧化钡(BHO)对水泥物理力学性能及水化热历程的影响规律以及水灰比对BHO-水泥体系强度及水化热历程的影响规律.试验结果表明:BHO使砂浆流动度下降,也对凝结时间影响较大,随掺量增加,缓凝作用增强,当BHO掺量较多(7%,质量分数)时,凝结时间反而较空白组短;BHO掺量较小时,对强度、水化热基本无影响,BHD质量分数大于3%时,强度、水化放热速率及放热量均显著降低;通过调整水灰比,可改善强度且不影响水化热历程.通过复合减水剂调整水灰比,质量分数为5%的BHO可有效降低水泥水化热且对强度无显著影响,尤其是抗折强度,可利用其进行大体积混凝土的温度控制.  相似文献   

19.
为了研究聚乙烯醇(PVA)纤维的掺量对水泥胶砂力学性能的影响,采用硫铝酸盐水泥、粉煤灰、硅灰、聚乙烯醇纤维等材料制备40 mm×40 mm×160 mm胶砂试件,通过流动度试验、抗折试验、抗压试验测试7组试件的力学性能。试验结果表明,随着纤维掺量的增加,胶砂的流动度逐渐降低。抗折、抗压试验中,试件的抗折强度均比不加纤维的有不同程度提高,掺加质量分数0.20%的PVA纤维的试件3、7、28 d的抗折强度均最大;试件的抗压强度和抗折强度的变化规律相同。韧性数值表明,试件在龄期为3 d的测试结果呈上升趋势,龄期为7 d和28 d呈下降趋势。经综合比较,PVA纤维质量分数为0.20%时,试件的力学性能最佳。  相似文献   

20.
高强砂浆是制备结构修补砂浆、灌浆料和超高性能纤维增强混凝土(UHPC)的基础,通过研究聚丙烯纤维长度和掺量对高强砂浆流动度和抗折抗压强度的影响,得出聚丙烯纤维在高强砂浆中的应用经验。研究表明:随着聚丙烯纤维掺量增加导致高强砂浆的流动度降低,1 d抗折强度和抗压强度提升明显;高强砂浆中聚丙烯纤维合理掺量为0.225%,最佳长度为6~10 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号