首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Attempts were made in this study to examine the effectiveness of coagulation and flocculation process using ferric chloride and polyelectrolyte (non-ionic polyacrylamide) for the treatment of beverage industrial wastewater. Removal of organic matter (expressed as chemical oxygen demand, COD), total phosphorus (TP) and total suspended solid (TSS) using ferric chloride and organic polyelectrolyte during coagulation/flocculation process were investigated. Also, the optimum conditions for coagulation/flocculation process, such as coagulant dosage, polyelectrolyte dosage, and pH of solution were investigated using jar-test experiment. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results revealed that in the range of pH tested, the optimal operating pH was 9. Percentage removals of 73, 95 and 97 for COD, TP and TSS, respectively, were achieved by the addition of 300mg/L FeCl(3).6H(2)O, whereas 91, 99 and 97% removal of COD, TP and TSS, respectively, were achieved with the addition of 25mg/L polyelectrolyte to 100mg/L ferric chloride. The volume of sludge produced, when ferric chloride was used solely, was higher compared to the use of combination of polyelectrolyte and FeCl(3).6H(2)0. The combined use of coagulant and polyelectrolyte resulted in the production of sludge volume with reduction of 60% of the amount produced, when coagulant was solely used for the treatment. It can be concluded from this study that coagulation/flocculation may be a useful pre-treatment process for beverage industrial wastewater prior to biological treatment.  相似文献   

2.
Chemically enhanced primary treatment (CEPT) is a technology that uses coagulants for enhanced pollutants removal at the primary stage of the wastewater treatment. This paper presents the detailed characteristics of tannery wastewater. It also explains effectiveness of CEPT in removing pollutants from tannery wastewater using various metal salts. The results of this study demonstrated that the tannery effluent had high concentrations of organic matter, solids, sulfates, sulfides and chromium. Alum, ferric chloride and ferric sulfate were tested as coagulants using jar test apparatus. Alum was found to be the suitable coagulant for tannery wastewater in a dose range of 200-240 mg/L as Al(2)(SO(4))(3). With alum, percentage removal efficiency for turbidity, total suspended solids (TSS), chemical oxygen demand (COD) and chromium was found to be 98.7-99.8, 94.3-97.1, 53.3-60.9, and 98.9-99.7%, respectively. National effluent quality standards for total suspended solids and chromium were met after CEPT. However, COD content was high, emphasizing the need of secondary treatment for the tannery effluent.  相似文献   

3.
Trihalomethanes formation potential of shrimp farm effluents   总被引:1,自引:0,他引:1  
Shrimp farm effluents along the Bangpakong River in the Chachoengsao Province of Thailand were evaluated for their trihalomethane formation potential (THMFP) and related parameters. The dissolved organic carbon (DOC), salinity and bromide ion concentrations of shrimp farm effluents were in the ranges of 12-14 mg/L, 0.1-14.5 ppt, and 0-14 mg/L, respectively. The dissolved organic matter was fractionated into hydrophobic and hydrophilic fractions having a range concentration of 3-5 and 8-10mg/L, respectively. The THMFP for all shrimp farm effluents analyzed was in the range of 810-3100 microg/L. The hydrophilic organic fraction was found to be a more active precursor of trihalomethanes (THMs) with 700-966 microg/L THMFP obtained from this fraction, while only 111-363 microg/L THMFP was derived from the hydrophobic fraction. The experimental results showed that salinity and bromide played crucial roles in the formation of THMs. At low salinity and bromide levels, chloroform was the dominant THM species, whereas at high salinity and bromide levels, bromoform became the dominant species. A Fourier Transform Infrared (FTIR) spectrum analysis of the samples before and after chlorination illustrated that the functional groups involved in the THM formation reaction were phenolic compounds, amines, aromatic hydrocarbons, aliphatic bromo-compounds, and aliphatic chloro-compounds.  相似文献   

4.
Wu K  Wang H  Liu R  Zhao X  Liu H  Qu J 《Journal of hazardous materials》2011,185(2-3):990-995
In this study, in situ formed Fe-Mn binary oxide (FMBO) was applied to treat a practical high-arsenic wastewater (5.81 mg/L). FMBO exhibited a remarkable removal capacity towards both As(III) and As(V), achieving a removal efficiency over 99.5%. However, the FMBO-As particles could not be sufficiently separated by gravitational sedimentation due to their low sizes and negative charges, as being indicated from laser particle size and zeta-potential analysis. Thus, poly-aluminum chloride (PACl) was introduced as a coagulant to facilitate the solid-liquid separation, and it remarkably improved As removal efficiencies. Results of scanning electron microscope (SEM) revealed that PACl contributed to the formation of precipitates with larger sizes and compact surfaces, which was favorable to sedimentation. Moreover, residual soluble As was removed by PACl hydroxides. The optimum dosages of FMBO and PACl were determined to be 60 mg/L and 80 mg/L, respectively. Additionally, the secondary pollution was minimized in FMBO-PACl process. Based on these bench-scale results, a full-scale treatment process was proposed to successfully treat 40,000 m(3) of high-arsenic wastewater in a municipal wastewater treatment plant (MWWTP). The average As concentration in the effluent was about 0.015 mg/L. FMBO-PACl process showed the advantages of high effectiveness, low cost, safety, and ease for operation.  相似文献   

5.
Coagulation process can be used to control natural organic matter (NOM) during drinking water production. The effectiveness of the coagulation process appeared to depend on the pH of coagulation rather than coagulant dosages. Jar tests conducted with depressed pH levels at different coagulation conditions removed more dissolved organic carbon (DOC) than those at moderate pH levels. For low DOC waters, like Omerli Lake Water (OLW), additional treatment would be necessary to achieve enhanced removal of NOM. In this study, three different coagulation techniques were used to remove disinfection by-products (DBP) precursors from three Istanbul surface water supplies. Jar test results indicate that optimize coagulation (OC) can enhance the removal of DBP precursors, and the removal of DOC could be improved from the current average of 15% to an average of 56% at the three sites tested. At lower pH, ferric coagulants generally performed better for removal of DBP precursors than did alum.  相似文献   

6.
A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.  相似文献   

7.
Performance of a full-scale combined treatment plant for jean-wash wastewater (JWW) was investigated. The combined process consisted of chemical coagulation, hydrolysis/acidification and Fenton oxidation. Chemical coagulation treatment with polymeric ferric sulfate (PFS)/lime alone proved to be effective in removing the COD (>70%) and part of the color (>50%) from the JWW. Fenton oxidation combined with hydrolysis/acidification as pretreatment offered a noticeable BOD removal efficiency. The average removal efficiencies for COD, BOD, SS, color and aromatic compounds of the combined process were about 95%, 94%, 97%, 95% and 90%, respectively, with the average effluent quality of COD 58 mg/L, BOD 19 mg/L, SS 4 mg/L and color 15(multiple), consistent with the national discharge limits for textile wastewater. The result indicated that the combined procedure could offer an attractive solution for JWW treatment with considerable synergistic advantages.  相似文献   

8.
In this work, the coagulation-flocculation process was used as pretreatment for purified terephthalic acid (PTA) wastewater with the objective of improving its overall biodegradability. PTA production generates wastewaters with toxicants p-xylene [1,4-dimethyl-benzene (C8H10)], a major raw material used in the production process, along with some of the intermediates, viz., p-toluic acid, benzoic acid, 4-carboxybenzaldehyde, phthalic acid and terephthalic acid. These compounds affect the bio-oxidation process of wastewater treatment; hence removal of these constituents is necessary, prior to conventional aerobic treatment. This paper addresses the application of coagulation-flocculation process using chemical coagulants, viz., aluminium sulphate (alum), polyaluminium chloride (PAC), ferrous sulphate and ferric chloride in combination with anionic polyelectrolyte. Polyaluminium chloride (PAC) in conjunction with lime and polyelectrolyte removed about 63.1% chemical oxygen demand (COD) and 45.2% biochemical oxygen demand (BOD) from PTA wastewater. Coagulation-flocculation process coupled with aerobic bio-oxidation treatment of PTA wastewater achieved, COD & BOD removals of 97.4% and 99.4%, respectively. The biodegradability enhancement evaluated in terms of the BOD5/COD ratio, increased from 0.45 to 0.67 at the optimum conditions. The results obtained from these studies indicate that the coagulation-flocculation process could be a suitable pretreatment method in reducing toxicity of PTA wastewater whilst enhancing biodegradability for aerobic biological treatment scheme.  相似文献   

9.
The main aim of this research work was to study the possible application of coagulation-flocculation as a pretreatment process for young landfill leachate in order to prevent fouling in the ultrafiltration membranes employed for the separation of biomass in the biological plant. Jar-test experiments were carried out to determine the optimum conditions for the removal of turbidity colour and organic matter. The coagulants ferric chloride, aluminium sulphate and aluminium polychloride (PAX) were tested, along with different types of flocculants (anionic and cationic polyelectrolytes). Optimum pH values were around 4.0 and 6.0 for ferric chloride and aluminium sulphate, respectively. It was not necessary to alter the pH of the leachate when using PAX, as the optimum value was found to be similar to that of the leachate (around 8.3). Optimum dosages were 0.4 g Fe(3+)/L, 0.8 g Al(3+)/L and 4 g PAX/L, although there was not much difference in the results for lower dosage of PAX. The best results were found with this coagulant, obtaining 98% turbidity removal, 91% colour removal and 26% COD removal. When flocculants were also added, the results were similar to those found when adding only coagulants, although a considerable increase in the settling rate was obtained. The volume of the sludge generated represents around 4.5-5.0% when using ferric chloride or aluminium sulphate, and 15% when using aluminium polychloride.  相似文献   

10.
The applicability of Fenton's oxidation as an advanced treatment for chemical oxygen demand (COD) and color removal from anaerobically treated poultry manure wastewater was investigated. The raw poultry manure wastewater, having a pH of 7.30 (+/-0.2) and a total COD of 12,100 (+/-910) mg/L was first treated in a 15.7 L of pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 72 days at mesophilic conditions (32+/-2 degrees C) in a temperature-controlled environment with three different hydraulic retention times (HRT) of 15.7, 12 and 8.0 days, and with organic loading rates (OLR) between 0.650 and 1.783 kg COD/(m3day). Under 8.0 days of HRT, the UASB process showed a remarkable performance on total COD removal with a treatment efficiency of 90.7% at the day of 63. The anaerobically treated poultry manure wastewater was further treated by Fenton's oxidation process using Fe2+ and H2O2 solutions. Batch tests were conducted on the UASB effluent samples to determine the optimum operating conditions including initial pH, effects of H2O2 and Fe2+ dosages, and the ratio of H2O2/Fe2+. Preliminary tests conducted with the dosages of 100 mg Fe2+/L and 200 mg H2O2/L showed that optimal initial pH was 3.0 for both COD and color removal from the UASB effluent. On the basis of preliminary test results, effects of increasing dosages of Fe2+ and H2O2 were investigated. Under the condition of 400 mg Fe2+/L and 200 mg H2O2/L, removal efficiencies of residual COD and color were 88.7% and 80.9%, respectively. Under the subsequent condition of 100 mg Fe2+/L and 1200 mg H2O2/L, 95% of residual COD and 95.7% of residual color were removed from the UASB effluent. Results of this experimental study obviously indicated that nearly 99.3% of COD of raw poultry manure wastewater could be effectively removed by a UASB process followed by Fenton's oxidation technology used as a post-treatment unit.  相似文献   

11.
Removal of terephthalic acid in alkalized wastewater by ferric chloride   总被引:1,自引:0,他引:1  
Terephthalic acid, which is a main component in alkali-decrement wastewater, is efficiently removed using ferric chloride in high pH solutions. About 90% removal of terephthalic acid is achieved at pH between 8 and 11. Especially, the removal reached 94.3% at pH 11. However, as the pH increased from pH 12 and 13, the low removal of terephthalic acid were found. The increasing ferric chloride dosage had a dramatic positive impact on the achieved removal of terephthalic acid. Further increase in the ferric chloride dosage did not produce better removal rate. The increase of terephthalic acid concentration also led to the increase of ferric chloride dosage in order to get the same removal of terephthalic acid. There was approximately a negative linear relationship between terephthalic acid concentration and removal of terephthalic acid. Compared with other coagulants, it can be seen that ferric chloride is more effective in a high pH solution and the amount of ferric chloride required is also less as compared with aluminum chloride, magnesium chloride and calcium chloride. Our results clearly showed that terephthalate anions strongly binds to positive Fe(OH)(3) flocs and forms insoluble complexes, probably through a mechanism involving electrostatic attraction. The electrostatic attraction may be particularly useful means of purifying wastewater in high pH solutions.  相似文献   

12.
Aluminum sulfate, alum, is a common chemical coagulant used for coagulation. Recently, polymers have been utilized in coagulation/flocculation processes for water purification. In this study, the ability of two organic polymers, tannin (natural polyelectrolyte) and AN913 (synthetic anionic polyelectrolyte), and clay to act as coagulant aids was tested, in the removal of phosphate from synthetic wastewater. Contaminants in synthetic waters were coagulated using alum, alum+clay, alum+tannin, alum+AN913, alum+tannin+clay and alum+AN913+clay. Alum together with polymers as coagulant aids yielded a significant improvement in phosphate removal compared with alum alone, for initial phosphate concentrations of 5–15 mg/l PO43−. The use of clay and polyelectrolytes improved the efficiency of phosphate removal and lowered the required alum dose. Fourier transform infrared (FTIR) spectroscopy was used for the identification and characterization of the aluminum species formed during dephosphorization of the synthetic wastewater with and without tannin, AN913 and clay. Evidence from FTIR spectroscopy showed the formation of aluminum hydroxyphosphate, hydroxy-Al-tannate and aluminum complexes containing phosphorus, tannin and AN913.  相似文献   

13.
Aerobic biodegradation of diesel fuel (DF)-contaminated wastewater is carried out in a three-phase fluidized bed reactor under unsteady and steady state conditions. The solid phase lava rock particles, which act as the support for the biomass, are fluidized by the upward flows of influent wastewater, and air. The results show that the reactor under unsteady state operation achieved 100% DF removal from synthetic wastewater loaded with 0.43-1.03 kg/m3 day of DF. An average of over 97% of the influent chemical oxygen demand (COD) was also removed from the wastewater with COD concentrations in the range, 547-4025 mg/L. For influent COD concentrations up to 1345 mg/L, the removal is greater than 90%. Under steady state operation, the reactor was able to remove 100% of the DF, and an average of 96% of the COD from the wastewater. It had approximately 200 mg/L of DF, and 1237 mg/L of COD at a low hydraulic residence time of 4 h. In general, the results demonstrate that the reactor is very efficient, and requires short residence times to remove both DF and COD from heavily contaminated wastewater.  相似文献   

14.
Poly-zinc silicate (PZSS) is a new type of coagulant with cationic polymer synthesized by polysilicic acid and zinc sulfate. It has been used in several sorts of wastewaters treatment, but not used in oily wastewater treatment. In this study, we investigated the coagulation/flocculation of oil and suspended solids in heavy oil wastewater (HOW) by PZSS and anion polyacrylamide (A-PAM). The properties of PZSS cooperated with A-PAM were compared with PAC and PFS in dosages, PAMs amount, settling time, pH value and flocs morphology. The results showed that PZSS was more efficient than PAC and PFS. Under the optimum experimental conditions of coagulation/flocculation (dosage: 100mg/L, A-PAM dosage: 1.0mg/L, settling time time: 40min and pH 6.5-9.5), more than 99% of oil was removed and suspended solid value less than 5mg/L by using PZSS cooperated with A-PAM, which could satisfy the demands of the pre-treatment process for HOW to be reused in the steam boiler or recycled into the injecting well.  相似文献   

15.
Nitrification of saline wastewaters was investigated in bench-scale moving-bed biofilm reactors (MBBR). Wastewater from a chemical industry and domestic sewage, both treated by the activated sludge process, were fed to moving-bed reactors. The industrial wastewater contained 8000 mg Cl(-)/L and the salinity of the treated sewage was gradually increased until that level. Residual substances present in the treated industrial wastewater had a strong inhibitory effect on the nitrification process. Assays to determine inhibitory effects were performed with the industrial wastewater, which was submitted to ozonation and carbon adsorption pretreatments. The latter treatment was effective for dissolved organic carbon (DOC) removal and improved nitrification efficiency. Nitrification percentage of the treated domestic sewage was higher than 90% for all tested chloride concentrations up to 8000 mg/L. Results obtained in a sequencing batch reactor (SBR) were consistent with those attained in the MBBR systems, allowing tertiary nitrification and providing adequate conditions for adaptation of nitrifying microorganisms even under stressing and inhibitory conditions.  相似文献   

16.
Chemical and physical characterization methods were used to analyze ferric, alum, and lime water treatment residual solids (WTRSs) in order to describe why phosphate or arsenate adsorption occurred on the WTRSs, and why ferric WTRSs were the stronger adsorbent for both phosphate and arsenate. In total, five WTRSs, two ferric, two alum, and one lime, were analyzed. Elemental analysis of the WTRSs showed lime residuals contained the greatest molar amount of the primary element (7.04 mol Ca/kg solid), followed by the ferric residuals (4.86-4.96 mol Fe/kg solid) whereas alum residuals contained the least amount of primary element as compared to the ferric or alum residual solids (3.62-4.67 mol Al/kg solid). Mercury porosimetry identified more small pores (<0.006 μm) in a ferric WTRSs when compared to an alum WTRSs, indicating that a more detailed pore structure allowing for intraparticle phosphate or arsenate diffusion might be present in the ferric solid. Similarly, SEM images at 1000 times magnification showed a porous surface in both ferric WTRSs, whereas the alum WTRSs showed a smooth surface at the same magnification. Several general equations to describe phosphate or arsenate adsorption on WTRSs were provided.  相似文献   

17.
Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.  相似文献   

18.
Tungsten removal from industrial wastewater by precipitation, coagulation and flocculation processes using ferric chloride is reported. Suitable process conditions (pH, ferric chloride concentration) were established in jar tests performed with wastewater samples. Alkaline wastewater was treated with ferric chloride and pH was adjusted to various points using sulphuric acid. Tungsten removal was found to be most efficient (98-99%) in acidic conditions (pH<6). The process conditions were also found to be suitable for operation of an industrial scale wastewater treatment facility. More than 97% of tungsten were removed and the residual concentration was smaller than 10 ppm.  相似文献   

19.
We studied the pretreatment of concentrated wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Results show that coagulation by polyaluminum chloride at dosage of 0.5 g/L could remove up to 17.2% chemical oxygen demand (COD) from the wastewater. Electrolysis using iron electrode achieved 33.2% COD removal at current of 2A in 180 min, which was attributed to coagulation and oxidation of the organic contaminants in the wastewater by the radicals (OH and O) and oxidants (O2, O3, and H2O2) produced in electrochemical reactions. Internal microelectrolysis using iron chips and granular activated carbon (GAC) showed that up to 60.5% COD could be removed under the conditions of iron/GAC/wastewater volumetric ratio of 3:2:490, sparge ratio (ratio of air flow rate to volume of wastewater) of 2:490 min(-1), and reaction time of 132 h. COD reduction in internal microelectrolysis was attributed to a combination of chemical and physical processes, mainly oxidation by radicals and oxidants formed in electrochemical reactions, adsorption on, co-precipitation with, and enmeshment in ferrous and ferric hydroxides resulted from Fe2+ released during anode oxidation. The results suggest that internal microelectrolysis using iron chips and GAC is a promising, low-cost alternative for pretreating concentrated wastewater from pesticide manufacturing.  相似文献   

20.
The ability of waste residue, generated from alum manufacturing process, to remove fluoride ion from water has been investigated. Series of batch adsorption experiments were carried out to assess parameters that influence the adsorption process. The factors investigated include the effect of contact time, adsorbent dose, thermal pretreatment of the adsorbent, neutralization of the adsorbent, initial fluoride concentration, pH of the solution and effect of co-existing anions. Results showed that Adsorption of fluoride is fairly rapid in first 5min and thereafter increases slowly to reach the equilibrium in about 1h. The removal efficiency of fluoride was increased with adsorbent dosage. About 85% removal efficiency was obtained within 1h at an optimum adsorbent dose of 16g/L for initial fluoride concentration of 10mg/L. Heat treatment and surface neutralization of the adsorbent did not improve the fluoride removal capacity and efficiency. The amount of fluoride adsorbed increased with increasing initial fluoride concentration. The percentage of fluoride removal remains nearly constant within the pH range of 3-8. The adsorption data at ambient pH were well fitted to the Dubinin-Radushkevick (D-R) isotherm model with a capacity of 332.5mg/g of the adsorbent. The adsorption kinetic was found to follow a pseudo-second-order rate equation with an average rate constant of 2.25gmin(-1)mg(-1). The presence of bicarbonate at higher concentrations (100-500mg/L) decreased the fluoride removal efficiency while other anions (chloride, sulfate, phosphate and nitrate) have no significant effect within the concentration range tested. The overall result shows that the waste residue is efficient defluoridating material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号