首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
In many European lowland rivers and riparian floodplains diffuse nutrient pollution is causing a major risk for the surface waters and groundwater to not achieve a good status as demanded by the European Water Framework Directive. In order to delimit the impact of diffuse nutrient pollution substantial and often controversial changes in landuse and management are under discussion. In this study we investigate the impact of two complex scenarios considering changes in landuse and land management practices on the nitrate loads of a typical lowland stream and the riparian groundwater in the North German Plains. Therefore the impacts of both scenarios on the nitrate dynamics, the attenuation efficiency and the nitrate exchange between groundwater and surface water were investigated for a 998.1 km(2) riparian floodplain of the Lower and Central Havel River and compared with the current conditions. Both scenarios target a substantial improvement of the ecological conditions and the water quality in the research area but promote different typical riparian landscape functions and consider a different grade of economical and legal feasibility of the proposed measures. Scenario 1 focuses on the optimisation of conservation measures for all natural resources of the riparian floodplain, scenario 2 considers measures in order to restore a good status of the water bodies mainly. The IWAN model was setup for the simulation of water balance and nitrate dynamics of the floodplain for a perennial simulation period of the current landuse and management conditions and of the scenario assumptions. The proposed landuse and management changes result in reduced rates of nitrate leaching from the root zone into the riparian groundwater (85% for scenario 1, 43% for scenario 2). The net contributions of nitrate from the floodplain can be reduced substantially for both scenarios. In case of scenario 2 a decrease by 70% can be obtained. For scenario 1 the nitrate exfiltration rates to the river drop even below the infiltration rates from the river, the riparian floodplain in that scenario represents a net sink for river derived nitrate. As the nitrate contributions from the investigated riparian floodplain represent only a small proportion of the total nitrate loads within the river (1% p.a.) the overall impact of the scenario measures on the nitrate loads at the river outlet remains small. However, during the ecologically most sensitive summer periods under current conditions nitrate contributions from the riparian groundwater of the Lower and Central Havel River (which covers only 5% of the area of the Havel catchment) represent more than 20% of the river loads. By the implementation of the investigated landuse changes within the research area the groundwater derived nitrate contributions could be halved to only 10% during summer baseflow conditions.  相似文献   

2.
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change.  相似文献   

3.
G. MORSE  BSc  MSc  MBA  DIC  A. EATHERALL  BSc  PhD  A. JENKINS  BSc  PhD 《Water and Environment Journal》1994,8(3):277-286
This study documents the development of a link between a geographical information system (GIS) and a non-point source pollution model. The GIS ARC/INFO was linked to the agricultural non-point source pollution model and ORACLE data sources. Application of the system is demonstrated using the Bedford-Ouse catchment as a suitable case study. Water quality impacts are predicted from source data describing topography, soils, land use and river network. The model results were in agreement with observed nitrate concentrations at the catchment outlet, and more appropriate data sources are considered to be the main priority for improving model predictive ability. Management scenarios were established to assess the impact of changing agricultural management practices on predicted water quality. The approach has significant potential for the management of agricultural pollution in the UK.  相似文献   

4.
Dynamically downscaled data from two Atmosphere-Ocean General Circulation Models (AOGCMs), ECHAM4 from the Max-Planck Institute (MPI), Germany and HadAm3H from the Hadley Centre (HAD), UK, driven with two scenarios of greenhouse gas emissions (IS92a and A2, respectively) were used to make climate change projections. These projections were then used to drive four effect models linked to assess the effects on hydrology, and nitrogen (N) concentrations and fluxes, in the Bjerkreim river basin (685-km(2)) and its coastal fjord, southwestern Norway. The four effect models were the hydrological model HBV, the water quality models MAGIC, INCA-N and the NIVA FJORD model. The downscaled climate scenarios project a general temperature increase in the study region of approximately 1 degrees C by 2030-2049 (MPI IS92a) and approximately 3 degrees C by 2071-2100 (HAD A2). Both scenarios imply increased winter precipitation, whereas the projections of summer and autumn precipitation are quite different, with the MPI scenario projecting a slight increase and the HAD scenario a significant decrease. As a response to increased winter temperature, the HBV model simulates a dramatic reduction of snow accumulation in the upper parts of the catchment, which in turn lead to higher runoff during winter and lower runoff during snowmelt in the spring. With the HAD scenario, runoff in summer and early autumn is substantially reduced as a result of reduced precipitation, increased temperatures and thereby increased evapotranspiration. The water quality models, MAGIC and INCA-N project no major changes in nitrate (NO(3)(-)) concentrations and fluxes within the MPI scenario, but a significant increase in concentrations and a 40-50% increase in fluxes in the HAD scenario. As a consequence, the acidification of the river could increase, thus offsetting ongoing recovery from acidification due to reductions in acid deposition. Additionally, the increased N loading may stimulate growth of N-limited benthic algae and macrophytes along the river channels and lead to undesirable eutrophication effects in the estuarine area. Simulations made by the FJORD model and the HAD scenario indicate that primary production in the estuary might increase up to 15-20%, based on the climate-induced changes in river flow and nitrate concentrations alone.  相似文献   

5.
A software package is presented here to predict the fate of nitrogen fertilizers and the transport of nitrate from the rooting zone of agricultural areas to surface water and groundwater in the Seine basin, taking into account the long residence times of water and nitrate in the unsaturated and aquifer systems. Information on pedological characteristics, land use and farming practices is used to determine the spatial units to be considered. These data are converted into input data for the crop model STICS which simulates the water and nitrogen balances in the soil-plant system with a daily time-step. A spatial application of STICS has been derived at the catchment scale which computes the water and nitrate fluxes at the bottom of the rooting zone. These fluxes are integrated into a surface and groundwater coupled model MODCOU which calculates the daily water balance in the hydrological system, the flow in the rivers and the piezometric variations in the aquifers, using standard climatic data (rainfall, PET). The transport of nitrate and the evolution of nitrate contamination in groundwater and to rivers is computed by the model NEWSAM. This modelling chain is a valuable tool to predict the evolution of crop productivity and nitrate contamination according to various scenarios modifying farming practices and/or climatic changes. Data for the period 1970-2000 are used to simulate the past evolution of nitrogen contamination. The method has been validated using available data bases of nitrate concentrations in the three main aquifers of the Paris basin (Oligocene, Eocene and chalk). The approach has then been used to predict the future evolution of nitrogen contamination up to 2015. A statistical approach allowed estimating the probability of transgression of different concentration thresholds in various areas in the basin. The model is also used to evaluate the cost of the damage resulting of the treatment of drinking water at the scale of a groundwater management unit in the Seine river basin.  相似文献   

6.
7.
This paper reviews the potential impacts of climate change on nitrate concentrations in groundwater of the UK using a Source-Pathway-Receptor framework. Changes in temperature, precipitation quantity and distribution, and atmospheric carbon dioxide concentrations will affect the agricultural nitrate source term through changes in both soil processes and agricultural productivity. Non-agricultural source terms, such as urban areas and atmospheric deposition, are also expected to be affected. The implications for the rate of nitrate leaching to groundwater as a result of these changes are not yet fully understood but predictions suggest that leaching rate may increase under future climate scenarios. Climate change will affect the hydrological cycle with changes to recharge, groundwater levels and resources and flow processes. These changes will impact on concentrations of nitrate in abstracted water and other receptors, such as surface water and groundwater-fed wetlands. The implications for nitrate leaching to groundwater as a result of climate changes are not yet well enough understood to be able to make useful predictions without more site-specific data. The few studies which address the whole cycle show likely changes in nitrate leaching ranging from limited increases to a possible doubling of aquifer concentrations by 2100. These changes may be masked by nitrate reductions from improved agricultural practices, but a range of adaption measures need to be identified. Future impact may also be driven by economic responses to climate change.  相似文献   

8.
The Seine river watershed (France) is a deeply anthropogenically impacted area, due to the high population density, intense industrial activities and intensive agriculture. The water quality and ecological functioning of the different rivers of the Seine drainage network have been extensively studied during the last fifteen years within the framework of a large French multidisciplinary scientific program (PIREN Seine program). This paper presents a synthesis of the main data gained in the scope of this program concerning the microbiological water contamination of the rivers of the Seine drainage network. The more common indicator of fecal contamination (fecal coliforms) was mainly used; some complementary works used E. coli and intestinal enterococci as alternative fecal indicators. Point sources (outfall of wastewater treatment plants) and non point sources (surface runoff and soil leaching) of fecal pollution to the rivers of the watershed were quantified. Results showed that, at the scale of a large urbanised watershed as the Seine basin, the input of fecal micro-organisms by non-point sources is much lower than the inputs by point sources. However, the local impact of diffuse non-human sources (especially surface runoff of pastured fields) can be of major importance on the microbiological quality of small headwater rivers. Fecal contamination of the main rivers of the Seine watershed (Seine, Marne, Oise rivers) was studied showing high level of microbiological pollution when compared to European guidelines for bathing waters. The strong negative impact of treated wastewater effluents outfall on the microbiological quality of receiving rivers was observed in different areas of the watershed. Once released in rivers, culturable fecal bacteria disappeared relatively rapidly due to mortality (protozoan grazing, lysis) or loss of culturability induced by stress conditions (sunlight effect, nutrient concentration, temperature). Mortality rates of E. coli were studied in different types of rivers within the watershed showing, in summer conditions, no major difference in the mortality rates in small and large rivers. As a result of these studies, a module describing the dynamics of fecal bacteria has been developed and embedded within a hydro-ecological model describing the functioning of the rivers of the whole watershed (the SENEQUE model). Once validated, such a model can be used for testing predictive scenarios and thus can be a very useful tool for the management of microbiological water quality at the scale of the whole basin.  相似文献   

9.
Cases of severe eutrophication are still observed in European surface waters even though tough regulation has been in place since the beginning of the 1990s to control nutrient losses and inputs in the environment. The purpose of this paper is to evaluate the evolution since 1991 of the quality of the water entering European seas in terms of the concentration of major nutrients (nitrogen and phosphorus), and to analyze the effectiveness of implemented national/international measures and EU legislation in reducing water nutrient pollution. Despite the reduction in large portions of the European territory of agricultural nutrient applications and nutrient point source emissions, the impact on water quality is limited. It is shown using two large river basins that this lack of response for nitrogen, and nitrate in particular, between the reduction of the nitrogen surplus and the recovery of water quality is partly explained by the lag time due to transfer of nitrates in the unsaturated and saturated zones and storage in the soils and aquifers. In order to monitor efficiently the impact of policy implementation on water quality, the Nitrates Directive and the Urban Waste Water Treatment Directive in particular, it is recommended to use long term permanent monitoring stations to be able to separate the impact of climate variability from that of policy implementation. It is also recommended to investigate and develop harmonized methodologies for estimating the lag time in order to come up with realistic estimates of response time of water bodies due to the implementation of measures.  相似文献   

10.
The quaternary aquifer of Vitoria-Gasteiz (Basque Country, Northern Spain) is characterised by a shallow water table mainly fed by drainage water, and thus constitutes a vulnerable zone in regards to nitrate pollution. Field studies were performed with a potato crop in 1993 and a sugar beet crop in 2002 to evaluate their impact on nitrate leaching. The overall predictive quality of the STICS soil-crop model was first evaluated using field data and then the model was used to analyze dynamically the impacts of different crop management practices on nitrate leaching. The model was evaluated (i) on soil nitrate concentrations at different depths and (ii) on crop yields. The simulated values proved to be in satisfactory agreement with measured values. Nitrate leaching was more pronounced with the potato crop than with the sugar beet experiment due to i) greater precipitation, ii) lower N uptake of the potato crop due to shallow root depth, and iii) a shorter period of growth. The potato experiment showed that excessive irrigation could significantly increase nitrate leaching by increasing both drainage and nitrate concentrations. The different levels of N-fertilization examined in the sugar beet study had no notable effects on nitrate leaching due to its high N uptake capacity. Complementary virtual experiments were carried out using the STICS model. Our study confirmed that in vulnerable zones agricultural practices must be adjusted, that is to say: 1) N-fertilizer should not be applied in autumn before winter crops; 2) crops with low N uptake capacity (e.g. potatoes) should be avoided or should be preceded and followed by nitrogen catch crops or cover crops; 3) the nitrate concentration of irrigation water should be taken into account in calculation of the N-fertilization rate, and 4) N-fertilization must be precisely adjusted in particular for potato crops.  相似文献   

11.
To achieve the objectives of the European Water Framework Directive (EWFD), the Seine basin Water Authority has constructed a number of prospective scenarios forecasting the impact of planned investments in water quality. Paris and its suburbs were given special attention because of their impact on the river Seine. Paris sewer system and overflow control is of major concern in future management plans. The composition and fate of the urban effluents have been characterized through numerous in situ samplings, laboratory experiments and modelling studies. The PROSE model was especially designed to simulate the impact on the river of both permanent dry-weather effluents and of highly transient Combined Sewer Overflow (CSO). It was also used to represent the impact of Paris at large spatial and temporal scales. In addition to immediate effects on oxygen levels, heavy particulate organic matter loads that settle downstream of the outlets contribute to permanent oxygen consumption. Until the late 90s, the 50 km long reach of the Seine inside Paris was permanently affected by high oxygen consumption accounting for 112% of the flux upstream of the city. 20% of this demand resulted from CSO. However, the oxygenation of the system is strong due to high phytoplankton activity. As expected, the model results predict a reduction of both permanent dry-weather effluents and CSOs in the future that will greatly improve the oxygen levels (concentrations higher than 7.3 mgO(2) L(-1), 90% of the time instead of 4.0 mgO(2) L(-1) in the late 90s). The main conclusion is that, given the spatial and temporal extent of the impact of many CSOs, water quality models should take into account the CSOs in order to be reliable.  相似文献   

12.
In rivers, sediments are frequently accumulating persistent chemicals, especially for those that are more contaminated as a consequence of pressure related to environmental pollution and human activity. The Seine river basin (France) is heavily polluted from nearby industrial activities, and the urban expansion of Paris and its suburbs within the Ile de France region and the sediments present in the Seine river basin are contaminated. To ensure safe, navigable waters, rivers and waterways must be dredged. In this paper, the quality of the sediment dredged in 1996, 1999 and 2000 is discussed. Physico-chemical characteristics of the sediment itself and of the pore-water are presented. Seine basin sediments show very diverse compositions depending on the sampling site. Nevertheless, a geographic distribution study illustrated that the Paris impact is far from being the only explanation to this diversity, the quality of this sediment is also of great concern. The sediment once dredged is transported via barges to a wet disposal site, where the dredged material is mixed with Seine water in order to be pumped into the receiving site. This sort of dumping might be responsible for the potential release of contaminants to the overlying water from the significantly contaminated sediments.  相似文献   

13.
The Riverstrahler model of ecological functioning of large drainage networks validated on the Seine river system has been used for calculating the seasonal variations of Production and Respiration at various spatial scales (e.g. according to river orders). Based on the measurements of biological processes, the P/R ratio has led to an evaluation of the "ecological functioning", beyond the notion of "good ecological status". Furthermore, the effects, on the P/R ratio, of the geomorphological and climate factors characterizing the Hydro-Eco-Regions (HER) of the Seine watershed have been quantitatively explored with the model. Whereas one finds a typical upstream-downstream pattern of the P/R ratio variations under the traditional rural conditions that prevailed in the Seine basin until the end of the 18th century, this pattern is strongly affected by the changes in urban populations and the implementation of wastewater collection and treatment, more than by the specificity of the physical factors characterizing the different HER. We have also found that autotrophy (a P/R ratio >1) might leads to eutrophication symptoms when P exceeds 1-2 mg C m(-2) d(-1) and that heterotrophy of the system (P/R ratio< 1) would reveal organic pollution when R exceeds 1-2 mg C m(-2) d(-1), stocks and fluxes of organic matter being expressed in carbon unit. Consequently, the P/R ratio appears as a good indicator of the perturbations caused by human activities in the watershed. The Riverstrahler model is able to quantify this effect.  相似文献   

14.
Many Iranian metropolises, including Shiraz, are situated in arid and semi-arid regions, lacking sufficient renewable water resources. In recent years, climate changes, including drought and rising temperatures, have led to changes in water supply and demand. Given the necessity and importance of urban water supply, this study investigates the impact of different climate scenarios on residential water demand. Many studies, in their models, do not consider the social interactions between household water consumers and the change in their consumption behaviour, which serves as a fundamental drawback. Thus, the present research attempts to propose an agent-based framework by modelling social interactions via the diffusion process to investigate water consumption behaviour efficiently. The model is calibrated and applied to Shiraz City in Iran, according to the data from 2006 to 2019, and it is used to simulate each scenario for the following years until 2032. The findings show that temperature has a positive and significant effect on residential water consumption; yet, rainfall negatively affects water consumption. The simulation results of these scenarios for temperature increase or decrease and rainfall changes are estimated. In addition, the developed agent-based platform can be easily calibrated and adjusted based on the data of any other city to simulate water demand estimation under different climatic and even economic scenarios. Urban water managers can benefit from such estimates to plan future infrastructure development and proactive management of seasonal water resources under the growing pressure of potential climate change because construing the sensitivity of seasonal water consumption to climate conditions is essential to respond to variations in demand.  相似文献   

15.
Many areas in the world face clean water scarcity problems and phosphorus reserves are likely to be depleted in the near future. Still, a large amount of clean water is used to transport excreta through sewer systems. Most of the wastewater generated worldwide is discharged untreated into aquatic systems and leads to water pollution and loss of valuable nutrients. In Hanoi, Vietnam's capital city, high population and economic growth as well as industrialisation have led to a decrease in groundwater level and to serious river and lake pollution. A probabilistic model, simulating the impact of measures on groundwater abstraction and nutrient recovery, was used to determine the impact of policy changes in Hanoi. The results obtained reveal that harmonising environmental sanitation and agricultural systems with one another will considerably increase nutrient recovery for food production, lower expenditure for artificial fertilisers and reduce the nutrient load into the environment. The model can be applied in urban areas of developing countries to assist in the design of environmental sanitation concepts.  相似文献   

16.
城市排水系统的集成化模拟研究   总被引:2,自引:1,他引:2  
城市排水系统的集成化模拟是国际上推行的一种研究方法,但在我国尚没有相关的实例报道。将美国环保局提供的城市暴雨径流管理模型(SWMM)与清华大学环境系自行研制开发的河流水质模型相结合,构成城市排水系统集成化模拟工具,它可以动态模拟暴雨径流(生活污水)→排水管网→污水处理厂→受纳水体的全过程。以深圳河湾地区为例,针对深圳市提出的排水系统规划布局方案运用该模拟工具进行模拟计算,评估该方案对深圳河湾地区水环境的影响。模拟结果表明,规划方案实施后对深圳河干流水质的改善效果突出,对支流水体水质的改善效果略差,需要进一步优化雨水管网布置和污水厂选址;规划方案可大大提高河水的COD达标率,但TN和TP的达标率仍相对较低,需要加强源头控制并提高污水处理厂的脱氮除磷效果。  相似文献   

17.
This study has analyzed the global nitrogen loading of rivers resulting from atmospheric deposition, direct discharge, and nitrogenous compounds generated by residential, industrial, and agricultural sources. Fertilizer use, population distribution, land cover, and social census data were used in this study. A terrestrial nitrogen cycle model with a 24-h time step and 0.5° spatial resolution was developed to estimate nitrogen leaching from soil layers in farmlands, grasslands, and natural lands. The N-cycle in this model includes the major processes of nitrogen fixation, nitrification, denitrification, immobilization, mineralization, leaching, and nitrogen absorption by vegetation. The previously developed Total Runoff Integrating Pathways network was used to analyze nitrogen transport from natural and anthropogenic sources through river channels, as well as the collecting and routing of nitrogen to river mouths by runoff. Model performance was evaluated through nutrient data measured at 61 locations in several major world river basins. The dissolved inorganic nitrogen concentrations calculated by the model agreed well with the observed data and demonstrate the reliability of the proposed model. The results indicate that nitrogen loading in most global rivers is proportional to the size of the river basin. Reduced nitrate leaching was predicted for basins with low population density, such as those at high latitudes or in arid regions. Nitrate concentration becomes especially high in tropical humid river basins, densely populated basins, and basins with extensive agricultural activity. On a global scale, agriculture has a significant impact on the distribution of nitrogenous compound pollution. The map of nitrate distribution indicates that serious nitrogen pollution (nitrate concentration: 10-50 mg N/L) has occurred in areas with significant agricultural activities and small precipitation surpluses. Analysis of the model uncertainty also suggests that the nitrate export in most rivers is sensitive to the amount of nitrogen leaching from agricultural lands.  相似文献   

18.
Southern Sweden suffers from coastal eutrophication and one reason is the high nitrogen load through rivers. The major part of this load originates from diffuse land-based sources, e.g. arable soil leaching. Effective reduction of load from such sources demand careful landscape analysis, combined with changed behaviour of the stakeholders. This study describes a chain of methods to achieve trustworthy management plans that are based on numerical modelling and stakeholders participation and acceptance. The effect of some measures was unexpected when modelling their impact on the catchment scale.Management scenarios to reduce riverine nitrogen load were constructed in an actor game (i.e. role-play) for the Genevadsån catchment in southern Sweden. The game included stakeholders for implementation of a loading standard for maximum nitrogen transport at the river mouth. Scenarios were defined after negotiation among involved actors and included changes in agricultural practices, improved wastewater treatment, and establishment of wetlands. Numerical models were used to calculate the nitrogen reduction for different measures in each scenario. An index model (STANK) calculated the root zone leaching of nitrogen from crops at four type farms. This generated input to a catchment scale model (HBV-N) and farm economics. The economic impact of different sets of remedial measures was evaluated for each type farm and then extrapolated to the catchment.The results from scenario modelling show that possible changes in agricultural practices (such as tuning, timing of fertilisation and ploughing, changed crop cultivation) could reduce the nitrogen load to the sea by some 30%, while wetland construction only reduced the original load by some 5%. In the most cost-effective scenario agricultural practices could reduce the riverine load by 86 t per year at a cost of 1.0 million SEK, while constructed wetlands only reduced the load by 14 t per year at a cost of 1.7 million SEK. Thus, changed agricultural practices can be the most effective and less expensive way to reduce nitrogen transport from land to the sea, while constructed wetlands with realistic allocations and sizes may only have small impact on riverine nitrogen transport from land to sea. The overall experience is that actor games and numerical modelling are useful tools in landscape planning for analysing stakeholders’ behaviour and the impact of measures to reduce coastal eutrophication.  相似文献   

19.
《Journal of Urbanism》2013,6(3):213-235
Different patterns of urban development may have widely varying long-term effects on greenhouse gas (GHG) emissions. To investigate such effects, we used UPlan geographic information system–based software to model three 2050 urban-growth scenarios for Yolo County, a predominantly agricultural area near Sacramento, California. Two scenarios correspond to the Intergovernmental Panel on Climate Change’s A2 and B1 storylines. We also added a third, infill-only scenario called AB32-Plus that assumes continued strong climate change policy in California and highly compact urban development. Results show dramatically different levels of GHG emissions from transportation and residential-building energy use in the three scenarios, especially when compact urban development is combined with strong assumptions about energy efficiency and population. The preservation of farmland is also an important climate mitigation and adaptation benefit of the compact-development alternative.  相似文献   

20.
在气候变化背景下,水文连通是风景园林学学科中 景观水文研究的热点和重点之一。目前的景观水文连通研究 多基于静态地表,而忽略地表演化过程,尤其是河底泥沙动态 变化。在总结现有水文连通研究的基础上,结合气候预测模 型、水动力地表景观演变模型及景观连通指数研究方法,以英 国赛文河凯尔苏斯流域为研究区,采用UKCP18气候模型预 测RCP8.5情景下未来10年间(2021—2030年)日降雨量, 运用凯撒二维水动力地表景观演变模型(CAESAR-Lisflood) 模拟10年连续河流演化及淹没模式变化,基于景观连通指数 评价流域景观水文的动态连通变化。结果表明:泥沙变化对淹 没模式和水文连通性产生影响,未来10年间整体连接度(IIC)与 可能连通性(PC)变低,雨季水文IIC与PC变化幅度较大,旱季 平稳。凯尔苏斯流域洪泛区域比河道的沉积作用更明显,流域 总沉积量是侵蚀量的4.6倍。泥沙输移作用使得淹没面积减少 0.25km2 、流域总水量减少40%,水文IIC与PC降低  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号