首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Granulated slag from metal industries and fly ash from the combustion of coal are among the industrial by-products and have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, compared with Portland cement, the hydration of concrete containing fly ash or slag is much more complex. In this paper, by considering the producing of calcium hydroxide in cement hydration and the consumption of it in the reaction of mineral admixtures, a numerical model is proposed to simulate the hydration of concrete containing fly ash or slag. The heat evolution rate of fly ash or slag blended concrete is determined from the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, a temperature rise in blended concrete is evaluated based on the degree of hydration of cement and mineral admixtures. The proposed model is verified with experimental data on the concrete with different water-to-cement ratios and mineral admixtures substitution ratios.  相似文献   

2.
本文采用环境扫描电子显微镜(ESEM)和热重-差热(TG-DTA)分析仪对磨细矿渣微粉、高钙粉煤灰、低钙粉煤灰的早期水化活性进行了系统测试和分析.理论和试验结果分析表明,掺合料取代水泥时,浆体早期抗压强度的提高取决于掺合料自身参与水化反应的速度和水化产物的数量.水化产物在掺合料颗粒表面沉积的速度和浆体中硅酸盐、铝酸盐水化产物的非蒸发水量随掺合料活性的提高而提高.掺合料活性按磨细矿渣微粉、高钙粉煤灰、低钙粉煤灰的顺序降低,将磨细矿渣微粉或高钙粉煤灰与低钙粉煤灰复合,可以克服低钙粉煤灰大掺量取代水泥时混凝土早期强度降低的缺陷,这是提高低钙粉煤灰在高强高性能混凝土中掺量的一个有效措施.  相似文献   

3.
李志坤  彭家惠  杨再富 《材料导报》2017,31(12):115-120
高性能减水剂与水泥适应性差会导致混凝土流动性和坍落度损失过快,矿物掺合料将影响高性能减水剂与水泥的相容性。对比研究矿物掺合料种类和掺量对水泥净浆、砂浆和混凝土流动性的影响;采用TOC法测试了矿物掺合料对聚羧酸减水剂吸附量的影响;分析了矿物掺合料影响聚羧酸减水剂与水泥相容性的机理。结果表明,粉煤灰和矿渣对提高水泥净浆流动性具有一定的叠加效应,可用胶砂减水率的加权平均值进行量化;硅灰对水泥浆体流动性的不利影响远大于粉煤灰和矿渣的辅助减水分散作用,不利于改善聚羧酸减水剂与水泥的相容性;粉煤灰和矿渣增加聚羧酸减水剂在水泥体系中的吸附量;粉煤灰和矿渣对聚羧酸减水剂在混凝土中的减水分散效果有改善作用但不显著。  相似文献   

4.
Recently, it has been said that deterioration of concrete structures occurs due to migration of ions, such as Cl or Na+, through concrete. In addition, some electrochemical methods which control migration properties through concrete, like desalination or re-alkalization, are becoming more important. However, the mechanisms of ion migration, in electric fields, through concrete are not well understood. Moreover, the effects of mineral admixtures, such as fly ash, silica fume and ground-granulated blast furnace slag on ion migration through concrete have not been closely investigated. From this viewpoint, for the evaluation of mineral admixtures, the properties of chloride ion migration through mortar containing fly ash, silica fume and ground-granulated blast furnace slag have been investigated.  相似文献   

5.
In order to explore the links between the macroscopic and microstructural characteristics of concrete with admixtures of active mineral additions, four series of concrete prisms, of mortar matrix prisms and mortar-aggregate Interfacial Transition Zone (ITZ) are prepared and tested under monotonic and cyclic loads. Five static mechanical parameters (compressive and bending strength, fracture energy, elastic modulus, Poisson ratio) and bending fatigue performance (fatigue life, critical maximum displacement and strain, fatigue damage) of such materials are experimentally evaluated. The results show that degradation laws of concrete properties under both monotonic and cyclic loads vary with the different cohesive strength ratio and elastic modulus ratio of ITZ and mortar matrix. The single or double additions of ground slag and fly ash with optimized mass fractions remarkably enhance the static and bending fatigue properties as well as change the failure mechanisms of concrete.  相似文献   

6.
李三  彭小芹  苟菁  周淦  黄婷  陈洋  王淑萍 《材料导报》2018,32(10):1711-1715
以碱激发偏高岭土制备地聚合物混凝土,分别研究了掺入15%的钢渣、矿渣或粉煤灰的地聚合物混凝土的力学抗压强度和抗冻性能,测试了地聚合物混凝土的真空饱水体积吸液率,运用XRD、SEM和DSC-TG等测试方法分析了矿物掺合料对地聚合物微观结构和水化产物的影响。结果表明:钢渣或矿渣能有效提高地聚合物混凝土的抗压强度,而粉煤灰的掺入使其强度稍有降低;地聚合物表观形貌中存在较多的孔洞和微裂缝导致其抗冻性能较差,掺入钢渣或者矿渣后地聚合物形成了新的产物C-S-H凝胶、C-A-S-H凝胶等并填充在结构中形成更加密实的板状结构,降低了地聚合物混凝土冻融破坏速率,五次冻融循环后地聚合物的相对强度均在90%以上,抗冻性能得到提高;粉煤灰降低了制备地聚合物混凝土的用水量且未水化的粉煤灰颗粒镶嵌在结构中增加了其密实性和抗冻性能,五次冻融循环后相对强度为86.9%,基准组的相对强度仅为79.7%。  相似文献   

7.
A possible practice to prevent disorders due to alkali-silica reaction (ASR) in concretes containing reactive aggregates is the use of chemical admixtures (lithium salts) or, more commonly, mineral admixtures such as fly ash, silica fume, ground granulated slag or metakaolin. An analysis of the literature concerning ASR revealed some papers devoted to the mitigating activity of reactive aggregate powders (RAP) when associated with their parent aggregates. These RAP result from the grinding of the reactive aggregate. To verify the efficiency of this method of mitigation, tests were performed on concrete prisms cured at 60°C and 100% R.H., using four reactive aggregates, associated or not with their RAP. The results showed that the use of RAP reduced or suppressed ASR-expansion, suppressed surface cracking and counteracted the loss of compressive strength due to ASR. If these findings are confirmed by trials on other types of aggregates, the addition of RAP would be a simple way of avoiding ASR disorders.  相似文献   

8.
针对再生混凝土阻尼性能,通过三点弯曲梁大尺寸材料阻尼测试装置,试验研究再生粗骨料(Recycled Coarse Aggregate, RCA)的取代率、RCA粒径、改性掺合料、激振力频率及幅值等因素对再生混凝土弹性阶段损耗因子影响。结果表明,再生混凝土损耗因子分别随RCA取代率的增加及RCA平均粒径的减小而增加;随激振频率的增加及激振力幅值的减小而减小;与普通混凝土相比,再生混凝土的损耗因子增加3%~10%;复掺钢纤维+橡胶粉、粉煤灰+矿粉改性后的再生混凝土损耗因子较改性前分别增加45.8%及30.3%,阻尼增强效果显著。RCA与新硬化水泥砂浆间薄弱界面层的粘滞滑移变形、界面层应力集中所致微裂缝的产生与发展及内部裂隙间的摩擦作用增加了再生混凝土的阻尼耗能。因此,当再生混凝土用于大宗结构性材料时,综合考虑其强度及阻尼性能,RCA取代率不应超过50%,并可复掺粉煤灰+矿粉进行综合改性。  相似文献   

9.
尹明干  汪晖  石飞停 《材料导报》2018,32(Z2):526-529
本工作研究了矿物掺合料(矿渣、粉煤灰)和激发剂(熟石灰和水泥)对磷石膏强度的影响,并且探索了水泥对磷石膏耐水系数的影响。此外对磷石膏改性处理后的微观形貌和孔结构进行了分析。研究结果表明:矿渣和粉煤灰均能提高磷石膏的强度,且矿渣对磷石膏强度的增强作用更明显;但两者对磷石膏耐水性的增强作用并不明显,矿渣掺量过多时会由于延迟钙矾石的形成而导致石膏开裂。水泥和熟石灰作为激发剂时可以增强磷石膏的强度,熟石灰的增强作用更明显。水泥对磷石膏的耐水性能有一定的增强作用。磷石膏的水胶比、养护龄期和矿物掺合料可以改变其孔隙率,但不会改变其孔径分布;粉煤灰可以提高石膏的孔隙率,并且改变其孔径分布;水泥会降低石膏的孔隙率并改变其孔结构。  相似文献   

10.
何伟  周予启  王强 《材料导报》2018,32(23):4125-4134
铜渣是铜冶炼和精炼过程的副产物,以每产1 t铜副产2.2 t铜渣计算,2017年全球铜渣排放量达到了5 170万t。但目前的铜渣处理仍以堆放为主,不仅占用了大量土地,重金属成分对堆放地也造成了严重的环境污染。铜渣,特别是水淬铜渣中含有较多的玻璃体,用作混凝土掺合料可以替代粉煤灰和矿渣,解决某些地区掺合料紧缺的状况。本文归纳总结了铜渣粉对混凝土工作性、力学性能和耐久性的影响,分析了铜渣作为掺合料使用时的环境安全性,提出了铜渣作为掺合料使用应注意的问题,为铜渣粉在混凝土行业中规模化应用提供了参考。 近年的研究成果表明,水淬铜渣中的玻璃体含量高、活性更好,而缓冷铜渣的玻璃体含量虽低,但仍有一定的活性。由于存在活性低和重金属成分高的问题,铜渣粉对混凝土工作性、力学性能和耐久性的影响比矿渣、粉煤灰等常见掺合料复杂得多,阻碍了铜渣粉作为掺合料在混凝土中的应用。 虽然存在不同观点,但多数研究成果表明铜渣粉可起到降低放热量、改善工作性及减少用水量的作用,同时也会产生泌水率增加的问题。由于活性偏低、重金属成分较高,铜渣粉的缓凝作用明显,不过大掺量使用所引起的凝结时间延长问题在多数研究中是可控的。铜渣粉导致混凝土早期强度不足,可通过添加激发剂、提高细度、降低水灰比等方式予以缓解和控制。铜渣粉对混凝土强度的负面影响会随龄期延长逐渐减轻,甚至在一段时间后对强度有利。此外,铜渣粉还能提高混凝土弹性模量并减少收缩,对抗断裂性能也无明显不利影响。但以不同指标评价混凝土脆性时,铜渣粉的作用还存在较大的争议。由于可促使毛细孔隙等有害孔隙数量减少,铜渣粉可使混凝土的吸水速率和吸水量降低,从而使耐久性等级有所改善。除优化孔隙结构外,铜渣粉与Ca(OH)2反应生成C-S-H凝胶,可改善过渡区,提高混凝土抗碳化、抗氯离子渗透性和抗硫酸盐侵蚀的能力。  相似文献   

11.
The effect of silica fume (SF), metakaolin (MK), fly ash (FA) and ground granulated blast-furnace slag (GGBS) on the setting times of high-strength concrete has been investigated using the penetration resistance method (ASTM C 403). In addition, the effect of a shrinkage-reducing admixture (SRA) on the setting times of normal and high-strength concrete was also studied. The setting times of the high-strength concrete were generally retarded when the mineral admixtures replaced part of the cement. While the SRA was found to have negligible effect on the setting times of normal strength concrete, it exhibited a rather significant retarding effect when used in combination with superplasticiser in high-strength concrete. The inclusion of GGBS at replacement levels of 40% and greater resulted in significant retardation in setting times. In general, as replacement levels of the mineral admixtures were increased, there was greater retardation in setting times. However, for the concrete containing MK, this was only observed up to a replacement level of 10%.  相似文献   

12.
In recent years, there has been a rapid increase in the use of mineral admixtures for high performance and durable concrete. Plastic shrinkage cracking in such concretes is a serious concern in large surface area/volume applications. The present study has two objectives: firstly, to investigate the influence of incorporating fly ash and granulated blast furnace slag (GGBS) on the susceptibility to such cracking; and secondly, to assess the techniques, such as fibre and shrinkage reducing admixture (SRA) addition, and spraying of curing compounds, to mitigate the cracking. The results indicate that replacement of ordinary Portland cement (OPC) with fly ash and GGBS increases the possibility of plastic shrinkage cracking significantly, with higher severity as the replacement level increases; 30% replacement of OPC with fly ash and GGBS doubled and quadrupled the crack area, respectively, mainly due to higher binder finesses, and the delay of setting and strength gain. Among the fibres tested, polypropylene and polyester fibres, at the recommended dosages of about 0.9 kg/m3, completely eliminated cracking in the most affected concrete (i.e., with 30% GGBS) while the dosages of the polyacrylonitrile and glass fibres had to be increased to provide a higher volume fraction. Two glycol-based SRAs, and two curing compounds based on acrylic resin and methacrylate mitigated cracking by significantly reducing evaporation from the surface of concrete.  相似文献   

13.
A long-term corrosion study was conducted to determine the effectiveness of calcium nitrite, silica fume, fly ash, ground granulated blast furnace slag, and DSS in reducing corrosion of reinforcing steel in concrete. Mixture proportions included single, double, and triple combinations of these admixtures. Non-cracked and pre-cracked slab specimens were evaluated by visual inspections, macrocell readings, half-cell potentials, and autopsies. Triple combinations of calcium nitrite, silica fume, and either fly ash or ground granulated blast furnace slag, as well as a double combination of calcium nitrite and ground granulated blast furnace slag, performed very well and are recommended in concrete mixtures exposed to severe corrosive environments. DSS outperformed the other admixtures for corrosion prevention in this study; however, it resulted in somewhat lower compressive strengths and had not been fully tested for effects on other concrete properties.  相似文献   

14.
The study presents the influence of characteristics of four aggregate types (two sintered lightweight fly ash aggregates, cold-bonded lightweight fly ash aggregate and normalweight crushed limestone aggregate) on the strength and elastic properties of concrete mixtures. Different models were also used in order to predict the strength and modulus of elasticity values of concretes. The results of this study revealed the achievement of manufacturing high-strength air-entrained lightweight aggregate concretes using sintered and cold-bonded fly ash aggregates. In order to reach target slump and air content, less amount of chemical admixtures was used in lightweight concretes than in normal-weight concrete, leading to reduction in production cost. The use of lightweight aggregates (LWA) instead of normalweight aggregates in concrete production slightly decreased the strength. The models given by codes, standards and software and equation derived in this study gave close estimated values to the experimental results.  相似文献   

15.
Mortar serves as the basis for the workability properties of self-compacting concrete (SCC) and these properties could be assessed by self-compacting mortars (SCM). In fact, assessing the properties of SCM is an integral part of SCC design. The objective of this study was to evaluate the effectiveness of various mineral additives and chemical admixtures in producing SCMs. For this purpose, four mineral additives (fly ash, brick powder, limestone powder, and kaolinite), three superplasticizers (SP), and two viscosity modifying admixtures (VMA) were used. Within the scope of the experimental program, 43 mixtures of SCM were prepared keeping the amount of mixing water and total powder content (portland cement and mineral additives) constant. Workability of the fresh mortar was determined using mini V-funnel and mini slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included ultrasonic pulse velocity and strength determined at 28 and 56 days. It was concluded that among the mineral additives used, fly ash and limestone powder significantly increased the workability of SCMs. On the other hand, especially fly ash significantly increased the setting time of the mortars, which can, however, be eliminated through the use of ternary mixtures, such as mixing fly ash with limestone powder. The two polycarboxyl based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.  相似文献   

16.
With the increasing use of self-compacting concrete (SCC) its durability has come into focus. Concerning the microstructure of concrete, the porosity in the interfacial transition zone (ITZ) is regarded as a key feature for permeability and durability. Generally, a combination of cement and mineral admixtures is used for the production of SCC. In the present study, ITZ porosity of four SCC mixtures produced with ordinary Portland cement, Portland limestone cement, slag cement and ordinary Portland cement combined with fly ash is analyzed. Additionally, the chloride migration coefficient is determined. ITZ porosity and width of the SCC mixtures are similar. The substantial differences in the chloride migration coefficients show that the binder type has a stronger influence on permeability than the pore volume in the ITZ.  相似文献   

17.
煤炭、粉煤灰及矿渣是用于水泥生产的原料或混凝土的掺合料,而细度是影响粉体材料性能的因素之一。本文以矿渣为材料,利用JFC-5对撞式流态化床气流磨制备了超细矿渣粉,对超细矿渣粉的粉体性能和微观形貌进行了研究。研究表明,气流磨粉磨超细矿渣粉存在粉磨平衡,超细矿渣粉颗粒分布集中,分选机转速过大,得到的矿渣粉体出现团聚现象。  相似文献   

18.
炭纤维增强混凝土能用来感知温度,其因在于短炭纤维的P-型传导性引起的塞贝克(Seebeck)效应所致.通过测量添加炭纤维或矿质掺和物(飞灰、硅土粉)前后六种波特兰水泥基混凝土的热电功率,研究了炭纤维增强轻质混凝土热敏的能力及其矿质掺合物对Seebeck效应的影响.结果表明: 炭纤维增强轻质混凝土具有类似于炭纤维增强标准混凝土的Seebeck效应,只是Seebeck系数因掺合了矿粉而减低.掺有矿粉的炭纤维增强轻质混凝土可用作建筑物的热传感器.  相似文献   

19.
Producing cements incorporating high-volume replacement of ordinary portland cement (OPC) by recycled industrial by-products is perceived as the most promising venture for the cement and concrete industry to meet its environmental obligations. However, the two-component (binary) cements thus produced are often associated with shortcomings such as the need for extended moist-curing, increased use of chemical admixtures, low early age strength, increased cracking tendency due to drying shrinkage, and de-icing salt scaling problems. There is need for research to investigate whether high-volume replacement multi-component (ternary and quaternary) cements could be optimized with synergistic effects allowing component ingredients to compensate for any mutual shortcomings. This study uses factorial experimental plans to investigate the performance of OPC-silica fume (SF)-class F fly ash (FA) and OPC-SF-ground granulated blast furnace slag (GBFS) ternary cementitious blends. Response surfaces for the superplasticizer requirement to achieve a constant flow, setting time, drying shrinkage up to 112 days, compressive strength at 1, 7, 28 and 56 days, and for the sulfate expansion up to 9-months were obtained for up to 20%, 60%, and 60% replacement levels of OPC by SF, FA and GBFS, respectively. A multiparametric optimization is used to establish response surfaces for a desirability function, which is used to rate ternary cementitious blends. Results indicate that when rheological, mechanical, durability and cost requirements are combined; the use of costly mineral admixtures such as silica fume is not economic in ternary OPC-SF-FA or OPC-SF-GBFS blends beyond levels of about 3 to 5% Moreover, it is shown that the major hurdle for high-volume replacement of OPC with class F fly ash is compromising the early age performance. Results also indicate that a good quality high-fineness GBFS can be used at replacement levels of OPC up to 60% without major disadvantages.  相似文献   

20.
In this study the electrochemical technique is applied to accelerate chloride ion migration in concrete to determine the chloride ions in anode cell. This paper presents a new method for determining the chloride migration rate in concrete from steady state migration test by measuring the electrical current. The plain ordinary Portland cement concrete and concrete containing different type of mineral admixtures (fly ash and slag) with w/b ratios of 0.35, 0.45, 0.55, and 0.65 were used.For a given charge passed in steady state, the current corresponding to the given charge passed was correlated with the chloride migration rate. The results for all mixtures show that the chloride migration rate and the current corresponding to a given charge passed in steady state is linearly correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号