首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以Ti、Al、C单质粉体为实验原料,掺杂适量的Si元素,采用高能球磨机制备Ti_3AlC_2导电陶瓷粉体,研究球磨转速和原料配比对合成Ti_3AlC_2导电陶瓷的影响。研究表明:在球磨转速为550 r/min,球料比5∶1和球磨时间3 h的球磨工艺下,可成功制备出Ti_3AlC_2含量为92.4 wt%的混合粉体,通过增加适量Al元素可以促进Ti_3AlC_2的合成;原料粉体按3Ti/1Al/0.1Si/1.8C的化学计量比进行机械合金化,所得粉体中Ti_3AlC_2的含量高达95.1 wt%,并且Si原子替代部分Al原子而形成Ti_3Al(Si)C_2固溶体。  相似文献   

2.
彭航  代帅  娄浪  倪杰  李任鹏  陈艳林 《硅酸盐学报》2019,47(9):1301-1305
以TiC粉、Al粉、Ti粉为原料,采用无压烧结工艺制备高纯Ti–Al–C三元层状陶瓷,探究了烧结温度、烧结时间、烧结助剂等对Ti–Al–C系三元层状陶瓷制备的影响。结果表明:在一定范围内提高烧结温度和烧结时间能减少杂质相的产生,不添加助剂情况下在1 400℃下保温3 h能得到80%(质量分数)以上的Ti–Al–C系三元层状陶瓷,该条件下掺入少量Si粉或Sn粉能得到高纯Ti–Al–C系三元层状陶瓷。TiC、Al、Ti和Si质量比为2.0:1.2:1.0:0.1的原料粉末在1 400℃保温3 h能得到纯度99%以上的Ti_3AlC_2陶瓷,TiC、Al、Ti和Sn质量比为2.0:1.2:1.0:0.1与TiC、Al、Ti和Sn质量比为1.0:1.2:1.0:0.1的原料粉末在1 400℃保温3 h均能制备出纯度99%的以Ti_3AlC_2为主晶相的Ti_3AlC_2/Ti_2AlC复相陶瓷。  相似文献   

3.
采用高纯Ti_3AlC_2粉体为原料,使用放电等离子烧结技术,制备了Ti_3AlC_2块体材料。通过在Ti_3AlC_2粉体上放置涂覆了BN粉体的石墨片,在Ti_3AlC_2块体表面形成了致密的Al N涂层。采用X射线衍射(XRD)、场发射扫描电镜(FE-SEM)结合能谱仪(EDS)分析试样。研究结果表明,在1300℃保温15 min,压力为30 MPa,可烧结得到组织细小、致密的Ti_3AlC_2块体材料。层片状的Ti_3AlC_2晶粒长约10~20μm。样品表面的Ti_3AlC_2晶粒会发生分解,生成Ti C与Al。然后,Al与BN反应可形成致密的Al N涂层,厚度约为10μm。  相似文献   

4.
放电等离子烧结合成了Ti_3AlC_2/TiB_2复合材料,对其进行了密度、硬度、相含量、断裂韧性和弯曲强度以及微观结构的测试,比较系统地研究了TiB_2对Ti_3AlC_2/TiB_2复合材料性能和结构的影响。实验结果表明:在Ti_3AlC_2中添加适量的TiB_2,可以在断裂韧性略有降低的情况下,得到高硬度和高弯曲强度的致密的Ti_3AlC_2/TiB_2复合材料。  相似文献   

5.
为了提高Ti_3Al C_2陶瓷的力学性能,本研究以Ti C粉、Ti粉、Al粉和V2O5粉为起始反应原料,采用原位热压技术在1350°C下反应烧结合成出了(Ti,V)_3AlC_2/Al_2O_3复合材料。利用X-射线衍射和扫描电子显微技术对合成产物的物相和微观结构进行了表征,并分析了复合材料的合成机制。最后,对(Ti,V)_3AlC_2/Al_2O_3复合材料的力学性能进行了研究。测试结果表明:(Ti_(0.92),V_(0.08))_3Al C_2/10wt%Al_2O_3复合材料具有最佳的力学性能,其硬度、断裂韧性及抗弯强度分别为5.56 GPa、12.93 MPa·m~(1/2)和435 MPa,相比于单相Ti_3Al C_2材料分别提升了60%、108%和31%。  相似文献   

6.
以三元碳化物陶瓷Ti_3AlC_2为原料,在500°C~1000°C温度范围内氯化制备具有纳米孔结构的碳化物衍生碳(Ti_3AlC_2-CDC)。高温氯化制备得到的Ti_3AlC_2-CDC由无定形碳和石墨组成。氯化温度越高,石墨化程度越明显,石墨有序度越高。Ti_3AlC_2-CDC的结构与前驱体Ti_3AlC_2的层状结构保持一致。但随着温度升高,Ti_3AlC_2-CDC会逐渐裂解为单片层或多片层。采用N2吸附技术研究了700°C、800°C和1000°C下制备的Ti_3AlC_2-CDC的孔隙结构特征,通过分析试样的吸附等温线特征和孔径分布探讨了温度对CDC孔结构的影响。  相似文献   

7.
采用TiB_2和Ti_3AlC_2微粉为原料,利用放电等离子烧结技术制备TiB_2/Ti_3AlC_2陶瓷复合材料,研究了Ti_3AlC_2含量对TiB_2陶瓷的致密度、物相微观结构以及力学性能的影响。结果发现在压力30MPa、1400℃条件下,添加钛铝碳含量为20~30wt%时制得的陶瓷复合材料含有较多的孔洞,且主要分布在TiB_2颗粒间,样品密度偏低,硬度低于570HV。当添加的Ti_3AlC_2量为40wt%时,样品的微观结构中孔洞数量降低且孔径变小,硬度高达1040HV。提高60TiB_2烧结温度至1600℃,物相TiB_2沿晶面(001)发生较明显的取向,样品60TiB_2的微观结构中孔洞消失或存在量极少,致密度高达4.393g/cm~3,硬度高达2400HV。  相似文献   

8.
《陶瓷》2019,(12)
利用钛粉、铝粉和石墨粉混合作为原料并添加少量低熔点元素——锡粉以改变烧结温度和铝含量,采用无压烧结技术在烧结温度为1 400℃,原料Ti/Al/C的摩尔比为3∶1.2∶2下制备出三元Ti_3AlC_2材料。通过X射线衍射仪表征其结构,获得的Ti_3AlC_2的纯度为96.7%,利用场发射扫描电子显微镜研究观察其微观形貌为典型的层状结构。为进一步合成锂离子电池负极材料MXene相Ti_3C_2提供基础。  相似文献   

9.
以Ti粉、Al粉、Si粉和C粉为反应原料,按着3Ti/Si/2C/x Al(x=0,0.1,0.2,0.3)化学计量,利用机械合金化工艺合成Ti_3SiC_2导电陶瓷,并研究Al含量对球磨合成Ti_3SiC_2含量的影响。研究表明:添加适量的Al可以显著促进Ti_3SiC_2的合成,当x=0.1时,球磨产物中粉体和块体中Ti_3SiC_2的含量分别达到76.8 wt%和85.9 wt%,但Al含量过多时,球磨产物中Ti_3SiC_2的含量则会下降。  相似文献   

10.
以Ti/Si/C,Ti/SiC/C和Ti/Si/TiC粉为原料体系,采用真空热压烧结制备纯样Ti_3SiC_2,通过XRD和SEM研究了不同原料体系和烧结温度对试样相组成、致密度及显微结构的影响。研究表明:烧结温度为1550℃时,Ti/Si/TiC体系制备的纯样Ti_3SiC_2主晶相为Ti_3SiC_2,第二相为TiC,Ti_3SiC_2相含量为94%,为各试样中最高,Ti_3SiC_2材料较其他试样致密且Ti_3SiC_2晶粒发育成均匀良好的板状晶粒,粒径约为20μm;制备纯度较高的Ti_3SiC_2材料需要提高Ti/Si/C,Ti/SiC/C原料体系的烧结温度。  相似文献   

11.
A reliable full-ceramic interface of ZrC-SiC composite was achieved rapidly at low temperature via pulsed electric current joining. Using a Ti foil as joining interlayer, the Zr and Si atoms reacted with Ti to form Ti3Zr3Si3, while the dissolved C precipitated in form of TiC. The current delivering during joining promoted the atomic diffusion and caused the preferential growth of TiC, rapidly achieving a full-ceramic interface at 1300 ℃. Evaluating the reliability by Weibull distribution, the full-ceramic interface exhibited a considerable characteristic strength of 178 MPa, and its reliability was better than the raw ZrC-SiC composite. The in-situ formed ceramic interface toughened the joint via the mechanism of multi-cracking, crack deflection and termination. The proposed method provides a practical technology for the rapid joining of ultra-high temperature composites or the construction of layered composites with high toughness at low temperature.  相似文献   

12.
Ti_3AlC_2陶瓷的热压合成   总被引:1,自引:0,他引:1  
艾桃桃 《陶瓷》2010,(10):21-23
以TiC-Ti-Al为反应体系,采用原位热压技术制备Ti3AlC2陶瓷。借助XRD分析相组成,并对实验现象进行分析。结果表明,TiC的加入,避免了Ti和C粉之间强烈的放热反应。通过降低初始压坯尺寸抑制了"热爆行为",有利于合成高纯Ti3AlC2。用大压坯时,"热爆行为"明显,产物由Ti3AlC2、TiC和Ti3Al相组成,Ti3AlC2含量少;用小压坯时,未发生"热爆行为",产物由Ti3AlC2和TiC相组成,Ti3AlC2相含量较高。  相似文献   

13.
《Ceramics International》2020,46(5):5937-5945
SiC whisker coating was prepared on the surface of C/C composite successfully by CVD, and transient liquid phase (TLP) diffusion bonding was employed to realize the joining of SiC whisker coating modified C/C composite and Ti2AlNb alloy using Ti–Ni–Nb foils as interlayer. The microstructure, shear strength and fracture behavior were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD) and universal testing machine. The results show that SiC has good compatibility with C/C composite, and gradient interface formed between SiC-modified C/C composite and Ti2AlNb alloy. When the bonding experiment was carried out under bonding temperature of 1040 °C and holding time of 30min with 5 MPa pressure in vacuum, the joints formed well and no obvious defects can be observed. The typical microstructure of joints is C/C composite/SiC + TiC/Ti–Ni compounds + Ti–Ni–Nb solid solutions/residual Nb/diffusion reaction layer/Ti2AlNb alloy. With the increasing of bonding temperature, the thickness of joining area increased due to sufficient element diffusion. However, when bonding temperature is elevated to 1060 °C, some defects such as cracks and slag inclusions exist in the interface layer between interlayer and Ti2AlNb. The joints with maximum average shear strength of 32.06 MPa are bonded at 1040 °C for 30min. C, SiC and TiC can be found on the fracture surface of joints bonded at 1040 °C which indicated that fracture occurred at the interface layer adjacent SiC layer.  相似文献   

14.
A robust solid state diffusion joining technique for SiC ceramics was designed with a thickness-controlled Ti interlayer formed by physical vapor deposition and joined by electric field-assisted sintering technology. The interface reaction and phase revolution process were investigated in terms of the equilibrium phase diagram and the concentration-dependent potential diagram of the Ti-Si-C ternary system. Interestingly, under the same joining conditions (fixed temperature and annealing duration), the thickness of the Ti interlayer determined the concentration and distribution of the Si and C reactants in the resulting joint layer, and the respective diffusion distance of Si and C into the Ti interlayer differentiated dramatically during the short joining process (only 5 min). In the case of a 100 nm Ti coating as an interlayer, the C concentration in the joint layer was saturated quickly, which benefited the formation of a TiC phase and subsequent Ti3SiC2 phase. The SiC ceramics were successfully joined at a low temperature of 1000 °C with a flexural strength of 168.2 MPa, which satisfies applications in corrosive environments. When the Ti thickness was increased to 1 μm, Si atoms diffused easily through the diluted Ti-C alloy (a dense TiC phase was not formed), and the Ti5Si3 brittle phase formed preferentially. These findings highlight the importance of the diffusion kinetics of the reactants on the final composition in the solid state reaction, particularly in the joining technique for covalent SiC ceramics.  相似文献   

15.
Reactive hot pressing was used to prepare (Ti,Zr)B2–(Zr,Ti)C composites from equimolar ZrB2 and TiC powders. The reaction and solid-solution coupling effect and enhanced densification in ZrB2-50 mol.% TiC were proposed as contrasted to conventional consolidation of TiB2-50 mol.% ZrC. The (Ti,Zr)B2–(Zr,Ti)C composite sintered at a temperature as low as 1750 °C exhibited negligible porosity and average grain sizes of 0.30 μm for (Ti,Zr)B2 and 0.36 μm for (Zr,Ti)C. Complete reaction and rapid densification of ZrB2-50 mol.% TiC was achieved at 1800 °C for only 10 min. The densification mechanism was mainly attributed to material transport through lattice diffusion of Ti and Zr atoms with an activation energy of 531 ± 16 kJ/mol. This study revealed for the first time novel insights into rapid densification of refractory fine-grained diboride–carbide composites by reactive hot pressing at relatively low temperatures.  相似文献   

16.
The interfacial microstructure and mechanical properties of B4C-SiC-TiB2 composite joints diffusion bonded with Ti foil interlayer were investigated. The joints were diffusion bonded in the temperature range of 800–1200?°C with 50?MPa by spark plasma sintering. The results revealed that robust joint could be successfully obtained due to the interface reaction. B4C reacted with Ti to form nanocrystalline TiB2 and TiC at the interface at 800–1000?°C. Both the reactions between SiC and Ti and between TiB2 and Ti were not observed during joining. A full ceramic joint consisted of micron- and submicron-sized TiB2 and TiC, accompanied with the formation of micro-crack, was achieved for the joint bonded at 1200?°C. Joint strength was evaluated and the maximum shear strength (145?±?14.1?MPa) was obtained for the joint bonded at 900?°C. Vickers hardness of interlayer increased with increasing the joining temperature.  相似文献   

17.
A comprehensive reaction mechanism of Ti3AlC2 MAX-phase formation from its elemental powders while spark plasma sintering has been proposed. Microstructural evaluation revealed that Al-rich TiAl3 intermetallic forms at around 660 °C once Al melts. Gradual transition from TiAl3 to Ti-rich TiAl and Ti3Al intermetallic phases occurs between 700 °C and 1200 °C through formation of layered structure due to diffusion of Al from periphery toward the centre of Ti particles. Formation of TiC and Ti3AlC transient carbide phases were observed to occur through two different reactions beyond 1000 °C. Initially, TiC forms due to interaction of Ti and C, which further reacts with TiAl and Ti and gives rise to Ti3AlC. Later, Ti3AlC also forms due to diffusion of C into Ti3Al above 1200 °C. Above 1300 °C, Ti3AlC phase decomposes into Ti2AlC MAX-phase and TiC in presence of unreacted C. Finally, Ti2AlC and TiC reacts together to from Ti3AlC2 MAX-phase above 1350 °C and completes at 1500 °C.  相似文献   

18.
国内外很多学者用自蔓延高温合成法、自蔓延高温合成同电弧熔炼铸造技术相结合法、放电等离子烧结等方法合成了TiAl/Ti2AlC复合材料。最近,作者以Ti、Al、TiC粉为原料,用原位热压的方法合成了该复合材料。本文综述了TiAl/Ti2AlC复合材料的几种制备方法、力学及抗氧化性能的研究情况。  相似文献   

19.
SiC ceramics were successfully joined by Al infiltrated TiC tapes at 900-1100 °C for 0.5-2 h in vacuum. Phase constituents, microstructure and mechanical strength of the prepared SiC joints were characterized. The prepared SiC joints display dense interlayer and crack-free interface. The interlayer primarily consists of TiC and Al phases, together with small amount of TiAl3 and trace of Al4C3. With increasing the joining temperature or time, the interface layer either thickens or grows to multiple layers. The bending strengths of the SiC joints are higher than 190 MPa as bonded at present conditions, and are closely related with the property of interface and interlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号