首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, nanowire network anodized aluminum oxide (AAO) was fabricated by just adding a simple film-eroding process after the production of porous AAO. After depositing 50 nm of Au onto the surface, nanowire network AAO can be used as ultrasensitive and high reproducibility surface-enhanced Raman scattering (SERS) substrate. The average Raman enhancement factor of the nanowire network AAO SERS substrate can reach 5.93 × 106, which is about 14% larger than that of commercial Klarite® substrates. Simultaneously, the relative standard deviations in the SERS intensities are limited to approximately 7%. All of the results indicate that our large-area low-cost high-performance nanowire structure AAO SERS substrates have a great advantage in chemical/biological sensing applications.  相似文献   

2.
We report an electrophoretic deposition method for the fabrication of gold nanoparticle (GNP) thin films as sensitive surface-enhanced Raman scattering (SERS) substrates. In this method, GNP sol, synthesized by a seed-mediated growth approach, and indium tin oxide (ITO) glass substrates were utilized as an electrophoretic solution and electrodes, respectively. From the scanning electron microscopy analysis, we found that the density of GNPs deposited on ITO glass substrates increases with prolonged electrophoresis time. The films possess high mechanical adhesion strength and exhibit strong localized surface plasmon resonance (LSPR) effect by showing high SERS sensitivity to detect 1 × 10−7 M rhodamine 6 G in methanol solution. Finally, the relationship between Raman signal amplification capability and GNP deposition density has been further investigated. The results of our experiment indicate that the high-density GNP film shows relatively higher signal amplification capability due to the strong LSPR effect in narrow gap regions between the neighboring particles on the film.  相似文献   

3.
Surface-enhanced Raman scattering is an effective analytical method that has been intensively applied in the field of identification of organic molecules from Raman spectra at very low concentrations. The Raman signal enhancement that makes this method attractive is usually ascribed to the noble metal nanoparticle (NMNP) arrays which can extremely amplify the electromagnetic field near NMNP surface when localized surface plasmon resonance (LSPR) mode is excited. In this work, we report a simple, facile, and room-temperature method to fabricate large-scale, uniform gold nanoparticle (GNP) arrays on ITO/glass as SERS substrates using a promoted self-assembly deposition technique. The results show that the deposition density of GNPs on ITO/glass surface increases with prolonging deposition time, and nanochain-like aggregates appear for a relatively longer deposition time. It is also shown that these films with relatively higher deposition density have tremendous potential for wideband absorption in the visible range and exhibit two LSPR peaks in the extinction spectra because the electrons simultaneously oscillate along the nanochain at the transverse and the longitudinal directions. The SERS enhancement activity of these GNP arrays was determined using 10-6 M Rhodamine 6G as the Raman probe molecules. A SERS enhancement factor as large as approximately 6.76 × 106 can be obtained at 1,363 cm-1 Raman shift for the highest deposition density film due to the strong plasmon coupling effect between neighboring particles.  相似文献   

4.
A nanocomposite of silver nanoparticles/reduced graphene oxide (Ag/rGO) has been fabricated as a surface-enhanced Raman scattering (SERS) substrate owing to the large surface area and two-dimensional nanosheet structure of rGO. A facile and rapid microwave-assisted green route has been used for the formation of Ag nanoparticles and the reduction of graphene oxide simultaneously with L-arginine as the reducing agent. By increasing the cycle number of microwave irradiation from 1 and 4 to 8, the mean diameters of Ag nanoparticles deposited on the surface of rGO increased from 10.3 ± 4.6 and 21.4 ± 10.5 to 41.1 ± 12.6 nm. The SERS performance of Ag/rGO nanocomposite was examined using the common Raman reporter molecule 4-aminothiophenol (4-ATP). It was found that the Raman intensity of 4-ATP could be significantly enhanced by increasing the size and content of silver nanoparticles deposited on rGO. Although the Raman intensities of D-band and G-band of rGO were also enhanced simultaneously by the deposited Ag nanoparticles which limited the further improvement of SERS detection sensitivity, the detectable concentration of 4-ATP with Ag/rGO nanocomposite as the SERS substrate still could be lowered to be 10−10 M and the enhancement factor could be increased to 1.27 × 1010. Furthermore, it was also achievable to lower the relative standard deviation (RSD) values of the Raman intensities to below 5%. This revealed that the Ag/rGO nanocomposite obtained in this work could be used as a SERS substrate with high sensitivity and homogeneity.  相似文献   

5.
We report here a simple and innovative method to prepare large-scale silver nanoparticle films based on the controlled coffee ring effect. It is demonstrated that the films can be used as surface-enhanced Raman scattering probes to detect low-concentration medicines. Silver nanoparticles with the average size about 70 nm were prepared by reduction of silver nitride. In our experiment, the coffee ring effect was controlled by tilting the substrates during the deposition of silver nanoparticle films. Silver nanoparticle films were spontaneously formed on the surface of silicon substrates at the temperatures about 50°C based on the solvent evaporation and the coffee ring effect. The microstructure of the films was investigated using the scanning electron microscope and atomic force microscope. The surface roughness of the films is found as small as 20 nm. Then, the films were exposed to aqueous solutions of medicine at different concentrations. A comparison with a Raman spectra measured with a conventional Raman spectrometer showed that the Raman signal can be detected in the solution with concentrations as low as 1 × 10−5 M, and the enhancement factor achieved by the silver nanoparticle film can at least reach to 1.08 × 104. Our experimental results indicate that this technique is promising in the production of large-scale silver nanoparticle films for the surface-enhanced Raman scattering. These may be utilized in biochemical and trace analytical applications.  相似文献   

6.
Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.  相似文献   

7.
A facile approach to prepare electrospun poly(vinly alcohol) (PVA) nanofibers with high concentration of gold nanoparticles (Au NPs) on the fibers, had been developed. These PVA/Au nanofibers could be used as flexible surface-enhanced Raman scattering (SERS) substrates. Relatively high concentration of PVA aqueous solution (10 wt %) was used as the stabilizing agent for gold salt precursor, as well as the starting solution for electrospinning. This method was demonstrated to be effective to prepare high-concentration-gold nanoparticles without aggregation and precipitation by reducing high concentration of gold salt in the presence of PVA aqueous solution. SEM and TEM images showed that both the amount and the size of Au NPs which embedded in PVA nanofibers, increased with increasing the gold salt content, while the gap between the adjacent NPs decreased. Raman spectra showed an apparent enhancement in the signal of 4-mercaptobenzoic acid (4-MBA) molecules pre-absorbed from its ethanol solution onto the PVA/Au nanofibers. The high SERS activity to 4-MBA in solution with a relatively low concentration (10−6 M), could be mainly attributed to the reduced gap of Au NPs.  相似文献   

8.
The blue triangle nanosilver (BAgNP) sol was prepared by the two reducers of NaBH4 and H2O2. Using BAgNP as the precursor, a small spherical nanosilver (AgNP) sol in yellow was synthesized by addition of suitable amounts of X (X = Cl, Br, and I). The oxidization process of BAgNP to AgNP was studied in detail by resonance Rayleigh scattering (RRS), surface-enhanced Raman scattering (SERS), laser scattering, surface plasmon resonance (SPR) absorption, and microscope techniques. It has been observed that NaCl accelerated the oxidizing BAgNP to form AgNP, and an oxidizing mechanism and quasi-nanograting Raman-scattering enhanced mechanism were developed to explain the phenomena. Using the BAgNP sol as substrate and based on the catalysis of Ti(IV) on the BrO3 oxidizing safranine T (ST) molecular probe with a strong SERS peak at 1,535 cm−1, a new catalytic SERS quantitative method was developed for the determination of 1.0 to 100 ng/mL Ti, with a detection limit of 0.4 ng/mL.  相似文献   

9.
We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film''s average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental results show that Au-Ag BNNPs fabricated on a glass substrate exhibit resonant peaks at 437 and 540 nm and a 14-fold increase in average forward scattering over the wavelength range of 300 to 1,100 nm in comparison with bare glass. When deposited on a 100-nm-thin a-Si film, Au-Ag BNNPs increase the average absorption and forward scattering by 19.6% and 95.9% compared to those values for Au NPs on thin a-Si and plain a-Si without MNPs, respectively, over the 300- to 1,100-nm range.  相似文献   

10.
In this paper, we report the effect of Au thickness on the self-assembled Au droplets on GaAs (111)A and (100). The evolution of Au droplets on GaAs (111)A and (100) with the increased Au thickness progress in the Volmer-Weber growth mode results in distinctive 3-D islands. Under an identical growth condition, depending on the thickness of Au deposition, the self-assembled Au droplets show different size and density distributions, while the average height is increased by approximately 420% and the diameter is increased by approximately 830%, indicating a preferential lateral expansion. Au droplets show an opposite evolution trend: the increased size along with the decreased density as a function of the Au thickness. Also, the density shifts on the orders of over two magnitude between 4.23 × 1010 and 1.16 × 108 cm−2 over the thickness range tested. At relatively thinner thicknesses below 4 nm, the self-assembled Au droplets sensitively respond to the thickness variation, evidenced by the sharper slopes of dimensions and density plots. The results are systematically analyzed and discussed in terms of atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), cross-sectional surface line profiles, and Fourier filter transform (FFT) power spectra.  相似文献   

11.
The fabrication of self-assembled Au droplets is successfully demonstrated on various GaAs (n11)B, where n is 2, 4, 5, 7, 8, and 9, by the systematic variation of the Au deposition amount (DA) from 2 to 12 nm with subsequent annealing at 550°C. Under an identical growth condition, the self-assembled Au droplets of mini to supersizes are successfully synthesized via the Volmer-Weber growth mode. Depending on the DA, an apparent evolution is clearly observed in terms of the average height (AH), lateral diameter (LD), and average density (AD). For example, compared with the mini Au droplets with a DA of 2 nm, AH of 22.5 nm, and LD of 86.5 nm, the super Au droplets with 12-nm DA show significantly increased AH of 316% and LD of 320%, reaching an AH of 71.1 nm and LD of 276.8 nm on GaAs (211)B. In addition, accompanied with the dimensional expansion, the AD of Au droplets drastically swings on 2 orders of magnitudes from 3.2 × 1010 to 4.2 × 108 cm-2. The results are systematically analyzed with respect to the atomic force microscopy (AFM) and scanning electron microscopy (SEM) images, energy-dispersive X-ray spectrometry (EDS) spectra, cross-sectional line profiles, Fourier filter transform (FFT) power spectra, and root-mean-square (RMS) roughness as well as the droplet dimension and density summary, respectively.  相似文献   

12.
The interphase between a polyimide and a metal substrate was modeled by depositing phthalic anhydride (PA) onto a gold substrate pretreated with 4-aminophenyldisulfide (APDS) and then curing in a mixture of acetic anhydride and pyridine or triethylamine. Surface-enhanced Raman scattering (SERS) and reflection-absorption infrared spectroscopy (RAIR) were used to characterize the model interphases. It was found that APDS was adsorbed dissociatively onto Au substrates through the sulfur atoms. The average tilt angle for APDS molecules adsorbed onto gold substrates was determined, using RAIR, to be approximately 46°. However, there was no preferred rotational angle of the adsorbed APDS molecules about the long molecular axes. When PA was deposited onto APDS-primed Au substrates, anhydride groups of PA reacted with amino groups of APDS to form amic acids. Curing these thin amic acid films in acetic anhydride catalyzed with pyridine produced mainly isoimide species, while curing in the presence of triethylamine gave imide as the major product. The relative amount of isoimide and imide thus depended strongly on the catalyst used in the chemical curing processes.  相似文献   

13.
In this work, the improved surface-enhanced Raman scattering (SERS) of Rhodamine 6G (R6G) adsorbed on Ag-Au bimetals synthesized via galvanic replacement of Ag with Au was first investigated. First, silver substrates were roughened by triangular-wave oxidation-reduction cycles (ORC) in aqueous solutions containing 0.1 M KCl. At the same time, Cl and Au-containing nanocomplexes in solutions were prepared by treating gold substrates with the similar electrochemically roughening procedures. Then the roughened Ag substrates were incubated in the Cl and Au-containing solutions for different couples of minutes to undergo the galvanic replacement reactions. Encouragingly, the SERS of R6G adsorbed on this roughened Ag substrate modified by the replacement of Ag with Au for 3 min exhibits a higher intensity by one order of magnitude and a better resolution, as compared with the SERS of R6G adsorbed on an unmodified roughened Ag substrate. The increased SERS effect can be ascribed to the compositions of complexes formed on the substrates. In this optimum condition, the atomic ratio of Ag to Au is ca. 6.6.  相似文献   

14.
Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50- to 100-nm particles, the electrical field strength must be higher than 3 × 106 V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs to be reduced to submicrons. Our research consists of a novel and simple approach, using a several tens micrometers scale electrode (low cost and easy to fabricate) to generate a dielectrophoretic microparticle assembly to form nanogaps with a locally amplified alternating current (AC) electric field gradient, which is used to rapidly trap nanocolloids. The results show that the amplified DEP force could effectively trap 20-nm colloids in the nanogaps between the 5-μm particle aggregates. The concentration factor at the local detection region was shown to be approximately 5 orders of magnitude higher than the bulk solution. This approach was also successfully used in bead-based surface-enhanced Raman spectroscopy (SERS) for the rapid identification of bacteria from diluted blood.  相似文献   

15.
Li H  Han L  Cooper-White JJ  Kim I 《Nanoscale》2012,4(4):1355-1361
Multipyrene terminated hyperbranched polyglycidol (mPHP) has been synthesized and used to non-covalently functionalize pristine graphene sheets (GSs) through π-π stacking interactions. Mediated by the mPHP layer, a variety of metal nanoparticles (Au, Ag and Pt) were in situ generated and deposited onto the surface-modified GS, yielding versatile GS/mPHP/metal nanohybrids. As typical examples, by simply controlling the concentration of HAuCl(4) used, Au nanostructures ranging from isolated spheres to a continuous film were created and coated onto the surface-modified GS. The studies on the fluorescence properties of resulting GS/mPHP/Au hybrid nanostructures reveal that the GS and controllable content of Au components in the hybrids can effectively quench the fluorescence emission of mPHP in a controlled manner. Further investigation indicates that GS/mPHP/Au hybrids are promising surface enhanced Raman scattering (SERS) substrates. The SERS activities of these hybrids depend on the contents and form of the Au. The GS/mPHP/Au hybrid containing continuous Au films exhibits the strongest SERS activity. GS/mPHP/Au hybrids are also used as efficient heterogeneous catalysts for the reduction of 4-NP, and demonstrate excellent catalytic performance. The detailed reaction kinetics and the reusability of such catalysts have also been investigated.  相似文献   

16.
In this work, we presented a surface mechanical attrition treatment (SMAT)-assisted approach to the synthesis of one-dimensional copper oxide nanowires (CuO NWs) for nanodevices applications. The as-prepared CuO NWs have diameter and the length of 50 ~ 200 nm and 5 ~ 20 μm, respectively, with a preferential growth orientation along [1 1¯ 0] direction. Interestingly, nanofield-effect transistor (nanoFET) based on individual CuO NW exhibited typical p-type electrical conduction, with a hole mobility of 0.129 cm2V-1 s-1 and hole concentration of 1.34 × 1018 cm-3, respectively. According to first-principle calculations, such a p-type electrical conduction behavior was related to the oxygen vacancies in CuO NWs. What is more, the CuO NW device was sensitive to visible light illumination with peak sensitivity at 600 nm. The responsitivity, conductive gain, and detectivity are estimated to be 2.0 × 102 A W-1, 3.95 × 102 and 6.38 × 1011 cm Hz1/2 W-1, respectively, which are better than the devices composed of other materials. Further study showed that nanophotodetectors assembled on flexible polyethylene terephthalate (PET) substrate can work under different bending conditions with good reproducibility. The totality of the above results suggests that the present CuO NWs are potential building blocks for assembling high-performance optoelectronic devices.  相似文献   

17.
Non-Ohmic and dielectric properties of a novel CaCu3Ti4O12/Au nanocomposite were investigated. Introduction of 2.5 vol.% Au nanoparticles in CaCu3Ti4O12 ceramics significantly reduced the loss tangent while its dielectric permittivity remained unchanged. The non-Ohmic properties of CaCu3Ti4O12/Au (2.5 vol.%) were dramatically improved. A nonlinear coefficient of ≈ 17.7 and breakdown electric field strength of 1.25 × 104 V/m were observed. The maximum stored energy density was found to be 25.8 kJ/m3, which is higher than that of pure CaCu3Ti4O12 by a factor of 8. Au addition at higher concentrations resulted in degradation of dielectric and non-Ohmic properties, which is described well by percolation theory.  相似文献   

18.
This work develops a highly sensitive immunoassay sensor for use in graphene oxide sheet (GOS)-based surface plasmon resonance (SPR) chips. This sensing film, which is formed by chemically modifying a GOS surface, has covalent bonds that strongly interact with the bovine serum albumin (BSA), explaining why it has a higher sensitivity. This GOS film-based SPR chip has a BSA concentration detection limit that is 100 times higher than that of the conventional Au-film-based sensor. The affinity constants (KA) on the GOS film-based SPR chip and the conventional SPR chip for 100 μg/ml BSA are 80.82 × 106 M-1 and 15.67 × 106 M-1, respectively. Therefore, the affinity constant of the GOS film-based SPR chip is 5.2 times higher than that of the conventional chip. With respect to the protein-protein interaction, the SPR sensor capability to detect angle changes at a low concentration anti-BSA of 75.75 nM on the GOS film-based SPR chip and the conventional SPR chip is 36.1867 and 26.1759 mdeg, respectively. At a high concentration, anti-BSA of 378.78 nM on the GOS film-based SPR chip and the conventional SPR chip reveals two times increases in the SPR angle shift. Above results demonstrate that the GOS film is promising for highly sensitive clinical diagnostic applications.  相似文献   

19.
Studies on interaction of graphene with radiation are important because of nanolithographic processes in graphene-based electronic devices and for space applications. Since the electronic properties of graphene are highly sensitive to the defects and number of layers in graphene sample, it is desirable to develop tools to engineer these two parameters. We report swift heavy ion (SHI) irradiation-induced annealing and purification effects in graphene films, similar to that observed in our studies on fullerenes and carbon nanotubes (CNTs). Raman studies after irradiation with 100-MeV Ag ions (fluences from 3 × 1010 to 1 × 1014 ions/cm2) show that the disorder parameter α, defined by ID/IG ratio, decreases at lower fluences but increases at higher fluences beyond 1 × 1012 ions/cm2. This indicates that SHI induces annealing effects at lower fluences. We also observe that the number of graphene layers is reduced at fluences higher than 1 × 1013 ions/cm2. Using inelastic thermal spike model calculations, we estimate a radius of 2.6 nm for ion track core surrounded by a halo extending up to 11.6 nm. The transient temperature above the melting point in the track core results in damage, whereas lower temperature in the track halo is responsible for annealing. The results suggest that SHI irradiation fluence may be used as one of the tools for defect annealing and manipulation of the number of graphene layers.

PACS

60.80.x; 81.05.ue  相似文献   

20.
We proposed an asymmetric hybrid plasmonic waveguide which is placed on a substrate for practical applications by introducing an asymmetry into a symmetric hybrid plasmonic waveguide. The guiding properties of the asymmetric hybrid plasmonic waveguide are investigated using finite element method. The results show that, with proper waveguide sizes, the proposed waveguide can eliminate the influence of the substrate on its guiding properties and restore its broken symmetric mode. We obtained the maximum propagation length of 2.49 × 103 μm. It is approximately equal to that of the symmetric hybrid plasmonic waveguide embedded in air cladding with comparable nanoscale confinement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号