首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The global demand for resource sustainability is growing. Thus, the development of single-source, environment-friendly colloidal semiconductor nanocrystal (NC) phosphors with broadband emission spectra is highly desirable for use as color converters in white light-emitting diodes (WLEDs). We report herein the gram-scale synthesis of single-source, cadmium-free, dual-emissive Mn-doped Zn–Cu–In–S NCs (d-dots) by a simple, non-injection, low-cost, one-pot approach. This synthesis method led to the formation of NCs with continuously varying compositions in a radial direction because each precursor had a different reactivity. Consequently, the d-dots exhibited two emission bands, one that could be attributed to Mn emission and a second that could be ascribed to the band edge of the Zn–Cu–In–S NCs. The emission peaks assigned to band edge were tunable by modifying the particle size and composition. The prepared d-dots also exhibited the characteristic zero self-absorption, a quantum yield of 46%, and good thermal stability. Combining a commercial blue light-emitting diode (LED) chip with optimized d-dots as color converters gave a high color rendering index of up to 90, Commission Internationale de l’eclairage color coordinates of (0.332, 0.321), and a correlated color temperature of 5,680 K. These results suggest that cadmium-free, thermally stable, single-phase d-dot phosphors have potential applications in WLEDs.
  相似文献   

2.
We report on the growth of strained Si nanocrystals (NCs) of sizes in the range 5-43 nm and analyze the detailed nature of strain and its influence on the optical properties of the NCs as a function of size. Freestanding Si NPs were prepared in a controlled way using a contamination free mechanical ball milling for duration 2-40 hrs. Structural analysis based on X-ray diffraction (XRD) pattern and high resolution transmission electron microscopy (HRTEM) confirms the good crystalline nature of these Si NCs. A detailed analysis of XRD line profile reveals that nature of the strain is anisotropic and the screw type dislocations are the main contributors to the lattice strain. The dislocation density and corresponding strain changes non-monotonically, while the crystallite size changes monotonically with milling time. Direct evidence of dislocations is shown from HRTEM images. The UV-vis-NIR absorption spectra of the Si NCs show an enhanced absorption band in the visible region that shows a systematic blue shift with reduced NC sizes. Si NCs with size approximately 5-10 nm exhibits a distinct photoluminescence (PL) band in the visible region at 580-585 nm at room temperature, while higher size NCs does not exhibit any visible emission. PL excitation measurement shows a very small Stokes shift for the visible emission band indicating no involvement of defects/interface in the emission. We argue that the observed absorption and emission can be explained based on the enhanced confinement effect on the strained Si NCs due to the combined effect of strain and size quantization.  相似文献   

3.
Zhu D  Chen Y  Jiang L  Geng J  Zhang J  Zhu JJ 《Analytical chemistry》2011,83(23):9076-9081
Quantum dots (QDs) are generally used for the conventional fluorescence detection. However, it is difficult for the QDs to be applied in time-resolved fluorometry due to their short-lived emission. In this paper, high-quality Mn-doped ZnSe QDs with long-lived emission were prepared using a green and rapid microwave-assisted synthetic approach in aqueous solution. Fluorescence lifetime of the Mn-doped ZnSe QDs was extended as long as 400 μs, which was 10,000 times higher than that of conventional QDs such as CdS, CdSe, and CdTe. The QDs exhibited an excellent photostability over 35 h under continuous irradiation at 260 nm. Capped with mercaptopropionic acid (MPA), the Mn-doped ZnSe QDs were used for the time-resolved fluorescence detection of 5-fluorouracil (5-FU) with the detection limit of 128 nM. The relative standard deviation for seven independent measurements of 1.5 μM 5-FU was 3.8%, and the recovery ranged from 93% to 106%. The results revealed that the Mn-doped ZnSe QDs could be a good candidate as a luminescence probe for highly sensitive time-resolved fluorometry.  相似文献   

4.
Alkyl‐terminated silicon nanocrystals (Si NCs) are synthesized at room temperature by hydride reduction of silicon tetrachloride (SiCl4) within inverse micelles. Highly monodisperse Si nanocrystals with average diameters ranging from 2 to 6 nm are produced by variation of the cationic quaternary ammonium salts used to form the inverse micelles. Transmission electron microscopy imaging shows that the NCs are highly crystalline, while FTIR spectra confirm that the NCs are passivated by covalent attachment of alkanes, with minimal surface oxidation. UV‐vis absorbance and photoluminescence spectroscopy show significant quantum confinement effects, with moderate absorption in the UV spectral range, and a strong blue emission with a marked dependency on excitation wavelength. The photoluminescence quantum yield (Φ) of the Si NCs exhibits an inverse relationship with the mean NC diameter, with a maximum of 12% recorded for 2 nm NCs.  相似文献   

5.
A Ge light-emitting diode (LED) is demonstrated using a metal-insulator-semiconductor (MIS) tunneling structure with Ge nanocrystals (NCs) embedded within the insulator. A high-k dielectric insulator was used and the Ge NCs were grown by co-sputtering onto p-type Si substrates. Electron-hole radiative recombination within the Ge NCs (grown within HfAlO) allowed for the observation of infrared emission. Visible light was also detected due to defect-related radiative recombination at the Ge/HfAlO interface. The NC size and Ge content were measured using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy and Raman spectroscopy. The peak wavelength from the photoluminescence experiments was lower when HfAlO was used as the dielectric than when HfO2 was used. This is likely due to the larger band gap of HfAlO, when compared to HfO2.  相似文献   

6.
We report room temperature fluorescence spectroscopy (FL) studies of ZnSe and Mn-doped ZnSe nanowires of different diameters (10, 25, 50?nm) produced by an electrochemical self-assembly technique. All samples exhibit increasing blue-shift in the band edge fluorescence with decreasing wire diameter because of quantum confinement. The 10?nm ZnSe nanowires show four distinct emission peaks due to band-to-band recombination, exciton recombination, recombination via surface states and via band gap (trap) states. The exciton binding energy in these nanowires exhibits a giant increase (~10-fold) over the bulk value due to quantum confinement, since the effective wire radius (taking into account side depletion) is smaller than the exciton Bohr radius in bulk ZnSe. The 25 and 50?nm diameter wires show only a single FL peak due to band-to-band electron-hole recombination. In the case of Mn-doped ZnSe nanowires, the band edge luminescence in 10?nm samples is significantly quenched by Mn doping but not the exciton luminescence, which remains relatively unaffected. We observe additional features due to Mn(2+) ions. The spectra also reveal that the emission from Mn(2+) states increases in intensity and is progressively red-shifted with increasing Mn concentration.  相似文献   

7.
ZnSe-based white light emitting diodes (LEDs) were homoepitaxially prepared on ZnSe substrates by molecular beam epitaxy. It was found to be possible to simultaneously observe the greenish-blue emission at 483 nm originating from the epitaxial layer and the weaker ZnSe substrate-related orange emission centred at around 595 nm. It was found that the emission wavelength of the LED and the measured chromaticity coordinate were almost independent of the injected current. It was also found that the turn-on voltage and the 20 mA operation voltage of the fabricated LED were 2.25 and 4 V, respectively  相似文献   

8.
Undoped and Mn-doped ZnS nanoclusters have been synthesized by a hydrothermal approach. Various samples of the ZnS:Mn with 0.5, 1, 3, 10 and 20 at.% Mn dopant have been prepared and characterized using X-ray diffraction, energy-dispersive analysis of X-ray, high resolution electron microscopy, UV-vis diffusion reflection, photoluminescence (PL) and photoluminescence excitation (PLE) measurements. All the prepared ZnS nanoclusters possess cubic sphalerite crystal structure with lattice constant = 5.408 ± 0.011 ?. The PL spectra of Mn-doped ZnS nanoclusters at room temperature exhibit both the 495 nm blue defect-related emission and the 587 nm orange Mn2+ emission. Furthermore, the blue emission is dominant at low temperatures; meanwhile the orange emission is dominant at room temperature. The Mn2+ ion-related PL can be excited both at energies near the band-edge of ZnS host (the UV region) and at energies corresponding to the Mn2+ ion own excited states (the visible region). An energy schema for the Mn-doped ZnS nanoclusters is proposed to interpret the photoluminescence behaviour.  相似文献   

9.
Pure and Mn-doped SrNb2O6 nanoparticles have been prepared by sol–gel combustion method using citric acid as fuel and complexing agent and nitrates as oxidants at a relatively low temperature compared to solid-state reaction method. X-ray diffraction (XRD) patterns of the pure SrNb2O6 samples show that the SrNb2O6 nanoparticles exhibited orthorhombic phase. Photoluminescence (PL) properties of all the undoped and Mn-doped samples were studied in detail. For the pure SrNb2O6 samples, a strong blue emission band centered at 442 nm and two weak emission bands centered at 524 nm and 626 nm, respectively, can be observed. For the Mn-doped SrNb2O6 samples, no emission from Mn2+ was observed while the blue emission intensity of SrNb2O6 varied with the Mn-doping concentration. This novel PL characteristic of the doped samples was explained.  相似文献   

10.
Spatial confinement of electronic excitations in semiconductor nanocrystals (NCs) results in a significant enhancement of nonradiative Auger recombination (AR), such that AR processes can easily dominate the decay of multiexcitons. AR is especially detrimental to lasing applications of NCs, as optical gain in these structures explicitly relies on emission from multiexciton states. In standard NCs, AR rates scale linearly with inverse NC volume. Here, we investigate multiexciton dynamics in hetero-NCs composed of CdSe cores and CdS shells of tunable thickness. We observe a dramatic decrease in the AR rates at the initial stage of shell growth, which cannot be explained by traditional volume scaling alone. Rather, fluorescence-line-narrowing studies indicate that the suppression of AR correlates with the formation of an alloy layer at the core-shell interface suggesting that this effect derives primarily from the "smoothing" of the confinement potential associated with interfacial alloying. These data highlight the importance of NC interfacial structure in the AR process and provide general guidelines for the development of new nanostructures with suppressed AR for future lasing applications.  相似文献   

11.
In this article, luminescent Si nanocrystalline (NC) powder was uniformly dispersed in dimethyl sulphoxide and then incorporated into the SiO2 gel matrix. Inorganic precursor tetraethylorthosilane was diluted in ethanol to form a homogenous solution. Dimethylformamide was used as a drying control chemical additive. Absorption and emission spectra of Si NPs in the silica gel with respect to time were recorded systematically at room temperature. The study reveals that the absorption and emission spectra of Si NPs, when doped in sol–gel silica matrix are modified. Influence in the band strengths and their peak positions upon ageing time are discussed. TEM shows existence of Si NPs of size ranges from 5 to 10?nm. Si NCs-doped sol–gel cylindrical rod was prepared and cut at different lengths from 10 to 15?mm to measure the optical gain. Photoluminescence stability of Si NCs in sol–gel is found for several weeks under the UV lamp.  相似文献   

12.
Ge nanocrystals (NCs) embedded in aluminum oxide were grown by RF-magnetron sputtering. Raman, high resolution transmission electron microscopy (HRTEM), selected area diffraction (SAD), and X-ray diffraction (XRD) techniques confirmed good cristallinity of the NCs from samples annealed at 800 degrees C. The average NC size was estimated to be around 7 nm. Photoluminescence (PL) measurements show an emission related to the NCs. The temperature dependence of the PL confirms the confinement phenomenon in the Ge NCs.  相似文献   

13.
Cd(1-x)Mn(x)S nanocrystals (NCs) were successfully grown in a glass matrix and investigated by photoluminescence (PL), electron paramagnetic resonance (EPR) and magnetic force microscopy (MFM). We verified that the luminescent properties of these NCs can be controlled both by changing the x concentration and by thermal annealing of the samples. The EPR and PL data showed that the characteristic emission of Mn(2+) ions ((4)T(1)-(6)A(1)) is only observed when this magnetic impurity is substitutionally incorporated in the Cd(1-x)Mn(x)S NC core (site S(I)). Besides, it was observed that the emission ((4)T(1)-(6)A(1)) suppression, caused by the Mn(2+) ion presence near the surface (site S(II)) of the Cd(1-x)Mn(x)S NCs, is independent of the host material. The MFM images also confirmed the high quality of the Cd(1 - x)Mn(x)S NC samples, showing a uniform distribution of total magnetic moments in the nanoparticles.  相似文献   

14.
We use a combination of low-temperature magneto-optical and lifetime spectroscopies to study the band-edge exciton fine structure of highly photostable single CdSe/ZnS nanocrystals (NCs). Neutral NCs displaying multiline emission spectra and multiexponential photoluminescence (PL) decays are studied as a function of temperature and external magnetic fields. Three different fine structure regimes are identified as a function of the NC aspect ratio. In particular, we identify an optically inactive ground exciton state, whose oscillator strength is tuned up under magnetic field coupling to bright exciton states, and attribute it to the zero angular momentum ground exciton state of elongated NCs. We also show evidence for highly efficient biexciton emission in these NCs, with radiative yields approaching unity in some cases.  相似文献   

15.
Choy WC  Leung YP 《Applied optics》2011,50(31):G37-G41
ZnSe nanowires and nanobelts with zinc blende structure have been synthesized. The morphology and the growth mechanisms of the ZnSe nanostructures will be discussed. From the photoluminescence (PL) of the ZnSe nanostructures, it is interesting to note that red color emission with only a single peak at the photon energy of 2 eV at room temperature is obtained while the typical bandgap transition energy of ZnSe is 2.7 eV. When the temperature is reduced to 150 K, the peak wavelength shifts to 2.3 eV with yellowish emission and then blue emission with the peak at 2.7 eV at temperature less than 50 K. The overall wavelength shift of 700 meV is obtained as compared to the conventional ZnSe of about 100 meV (i.e., sevenfold extension). The ZnSe nanostructures with enhanced wavelength shift can potentially function as visible light temperature-indicator. The color change from red to yellowish and then to blue is large enough for the nanostructures to be used for temperature-sensing applications. The details of PL spectra of ZnSe at various temperatures are studied from (i) the spectral profile, (ii) the half-width half-maximum, and (iii) the peak photon energy of each of the emission centers. The results show that the simplified configuration coordinate model can be used to describe the emission spectra, and the frequency of the local vibrational mode of the emission centers is determined.  相似文献   

16.
In this study, the yellow emitting cubic structure of Sr0.95Zn0.05Se:Eu2+ phosphors were prepared by high temperature solid state reaction. The Sr0.95Zn0.05Se:Eu2+ phosphors exhibited strong excitation intensity under 400-460 nm region, and broad band emission appeared at around 545-600 nm due to the d-f transition of Eu2+. To enhance the red emission, HDA/TOP/TOPO capped CdSe/ZnS NCs were synthesized via fast nucleation and slow growth method. The narrow emission peak was located at 615 nm with 69% of high quantum yield. Bright white emission was generated by combining a 460 nm InGaN LED chip with CdSe/ZnS NCs and Sr0.95Zn0.05Se:Eu2+ hybrid phosphors. The fabricated white LEDs showed warm white light with acceptable CIE chromaticity coordinate variation from (0.343, 0.255) at 20 mA to (0.335, 0.250) at 50 mA. The addition of CdSe/ZnS NCs contributed to the extension of white light spectrum by supplement of the red region. The color rendering index was largely enhanced from 41.7 to 79.7 compared to the Sr0.95Zn0.05Se:Eu2+ based phosphors white LED.  相似文献   

17.
Uniform ultrasmall monodisperse SrYbF5 and SrErF5 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as stabilizing agent. Transmission electron microscopy and X-ray diffraction assays reveal that the as-synthesized NCs are of face-centered cubic structure and the cell parameters are 5.608 Å (SrYbF5) and 5.632 (SrErF5) Å. Under the excitation of a 980 nm laser, visible upconversion (UC) emission can be observed by naked eyes in Tm3+ or Er3+ doped SrYbF5 NCs. The integrated intensity of infrared emission is nearly two orders of magnitude stronger than that of the blue emission of SrYbF5:Tm3+ NCs. The energy transfer UC emission mechanisms were also investigated.  相似文献   

18.
We have investigated the properties of Mn-doped ZnO nanocrystalline film growing on zinc foil by the hydrothermal method. X-ray photoelectron spectroscopy shows that the manganese ions exist as Mn2+ in the film. From UV-vis spectra, we observe a red shift in wavelength of absorption and greater reflectivity due to the Mn ion incorporation in ZnO lattices. The photoluminescence spectrum of the Mn-doped ZnO film shows two strong new blue peaks centered at 424 nm and 443 nm, besides the UV emission peak owing to the band gap of ZnO semiconductor. The magnetic property of the Mn-doped ZnO exhibits a room temperature ferromagnetic characteristic with a saturation magnetization (Ms) of 0.3902 x 10(-3) emu/cm3 and a coercive field of 47 Oe. We suggest that the blue emission of the Mn-doped ZnO film corresponds to the electron transition from the level of interstitial Zn and Mn to the valence band. The defects brought about by Mn ion incorporation are the main cause of the room temperature ferromagnetic property.  相似文献   

19.
Color‐saturated red light‐emitting diodes (LEDs) with emission wavelengths at around 620–640 nm are an essential part of high‐definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite‐based LEDs (PeLEDs); however, the efficiency of the current color—pure red PeLEDs—still far lags behind those of other‐colored ones. Here, a simple but efficient strategy is reported to gradually down‐shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor—benzyl iodide with aromatic rings—and realize p‐doping in the color‐saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best‐performing color‐saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin‐film planar LEDs.  相似文献   

20.
High-quality ZnS:Mn2+/ZnS core/shell nanocrystals (NCs) with a core crystal diameter of 6.1 nm and 1.15 nm thick shells were synthesized via a high-boiling solvent process. The energy levels of the conduction band and valance band are estimated to be -3.2 eV and -6.8 eV by cyclic voltammetry and ultraviolet-visible (UV-vis) absorption spectra. The ZnS:Mn2+/ZnS NC emission peak is primarily located at 580 nm under 310 nm light excitation, originating from the charge transition from 4T1 to 6A1 within the 3d5 configuration of the Mn2+ ion. Based on ZnS:Mn2+/ZnS NCs as the active layer electroluminescent devices, the emission peak mainly locates at 460 nm with one shoulder emission peaking at 580 nm. The photoluminescence and electroluminescence properties of ZnS:Mn2+/ZnS NCs are investigated in the view of charge carrier injection and energy level alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号