首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O157:H7 can contaminate raw ground beef and cause serious human foodborne illness. Previous reports describe the behavior of E. coli O157:H7 in ground beef under different storage conditions; however, models are lacking for the pathogen's behavior in raw ground beef stored over a broad range of temperature. Using sterile irradiated raw ground beef, the behavioral kinetics of 10 individual E. coli O157:H7 strains and/or a 5- or 10-strain cocktail were measured at storage temperatures from 5° to 46 °C. Growth occurred from 6 to 45 °C. Although lag phase duration (LPD) decreased from 10.5 to 45 °C, no lag phase was observed at 6, 8, or 10 °C. The specific growth rate (SGR) increased from 6 to 42 °C then declined up to 45 °C. In contrast to these profiles, the maximum population density (MPD) declined with increasing temperature, from approximately 9.7 to 8.2 log cfu/g. Bias (Bf) and accuracy (Af) factors for an E. coli O157:H7 broth-based aerobic growth model (10 to 42 °C) applied to the observations in ground beef were 1.05, 2.70, 1.00 and 1.29, 2.87, 1.03, for SGR, LPD and MPD, respectively. New secondary models increased the accuracy of predictions (5 to 45 °C), with Bf and Af for SGR, LPD, and MPD of 1.00, 1.06, and 1.00 and 1.14, 1.33, and 1.02, respectively. These new models offer improved tools for designing and implementing food safety systems and assessing the impact of E. coli O157:H7 disease.  相似文献   

2.
The antimicrobial effect of thyme essential oil (EO) at supplementation levels of 0.3%, 0.6% or 0.9%, nisin at 500 or 1000 IU/g, and their combination, on Escherichia coli O157:H7 was examined in both tryptic soy broth (TSB) and minced beef meat. EO at 0.3% possessed a weak antibacterial activity against the pathogen in TSB, whereas at 0.9% showed unacceptable organoleptic properties in minced meat. Thus, only the level of 0.6% of EO was further examined against the pathogens in minced meat. Treatment of minced beef meat with EO at 0.6% showed an inhibitory activity against E. coli O157:H7 during storage at 10 °C, but not at 4 °C. Treatment of minced beef meat or TSB with nisin at 500 or 1000 IU/g did not show any antibacterial activity against E. coli O157:H7. The combination of EO at 0.6% and nisin at 500 or 1000 IU/g showed an additive effect against the pathogen, which was higher during storage at 10 °C than at 4 °C.  相似文献   

3.
The fate of Listeria monocytogenes, Salmonella typhimurium, or Escherichia coli O157:H7 were separately monitored both in and on soudjouk. Fermentation and drying alone reduced numbers of L. monocytogenes by 0.07 and 0.74 log10 CFU/g for sausages fermented to pH 5.3 and 4.8, respectively, whereas numbers of S. typhimurium and E. coli O157:H7 were reduced by 1.52 and 3.51 log10 CFU/g and 0.03 and 1.11 log10 CFU/g, respectively. When sausages fermented to pH 5.3 or 4.8 were stored at 4, 10, or 21 °C, numbers of L. monocytogenes, S. typhimurium, and E. coli O157:H7 decreased by an additional 0.08–1.80, 0.88–3.74, and 0.68–3.17 log10 CFU/g, respectively, within 30 days. Storage for 90 days of commercially manufactured soudjouk that was sliced and then surface inoculated with L. monocytogenes, S. typhimurium, and E. coli O157:H7 generated average D-values of ca. 10.1, 7.6, and 5.9 days at 4 °C; 6.4, 4.3, and 2.9 days at 10 °C; 1.4, 0.9, and 1.6 days at 21 °C; and 0.9, 1.4, and 0.25 days at 30 °C. Overall, fermentation to pH 4.8 and storage at 21 °C was the most effective treatment for reducing numbers of L. monocytogenes (2.54 log10 CFU/g reduction), S. typhimurium (5.23 log10 CFU/g reduction), and E. coli O157:H7 (3.48 log10 CFU/g reduction). In summary, soudjouk-style sausage does not provide a favorable environment for outgrowth/survival of these three pathogens.  相似文献   

4.
A randomized complete block design with three replications was utilized to determine the effects of ionizing irradiation and hydrostatic pressure on the inactivation of Escherichia coli O157:H7, volatile composition, and consumer acceptability (n = 155) of frozen ground beef patties. E-beam and X-ray irradiation (2 kGy) inactivated E. coli O157:H7 below the limit of detection, while hydrostatic pressure treatment (300 mPa for 5 min at 4 °C) did not inactivate this pathogen. Solid-phase microextraction (SPME) was used to extract volatile compounds from treated ground beef patties. Irradiation and hydrostatic pressure altered the volatile composition (P < 0.05) of the ground beef patties in respect to radiolytic products. However, results were inconclusive on whether these differences were great enough to use this method to differentiate between irradiated and non-irradiated samples in a commercial setting. Irradiation did not affect (P > 0.05) consumer acceptability of ground beef patties when compared to untreated samples, but hydrostatic pressure caused decreased acceptability (P < 0.05) when compared to other treatments.  相似文献   

5.
Cells of Escherichia coli O157:H7 on uninjured and injured surfaces of green pepper were inactivated by 0·15–1·2 mg l−1ClO2gas treatments. A membrane-surface-plating method was used for resuscitation and enumeration of E. coli O157:H7 treated with ClO2. The location and viability ofE. coli O157:H7 on uninjured and injured green pepper surfaces after ClO2gas treatments were visualized using confocal laser scanning microscopy (CLSM). Live and dead cells of E. coli O157:H7 on pepper surfaces were labeled with a fluorescein isothiocyanate-labeled antibody and propidium iodide, respectively. A 7·27 log reduction of E. coli O157:H7 on uninjured green pepper surfaces was obtained with a 0·60 mg l−1ClO2gas treatment for 30 min at 20°C under 90–95% relative humidity. For injured surfaces, a 6·45 log reduction was achieved with a 1·2 mg l−1ClO2gas treatment. Each ClO2gas treatment (0·15–1·2 mg l−1ClO2) for inoculated bacteria on uninjured surfaces showed significantly more reductions (1·23–4·24 log) than for those on injured surfaces (P<0·05). The microphotographs of CLSM showed that bacteria preferentially attached to injured surfaces and those bacteria could be protected from bacterial reduction by the injuries. This study indicates that ClO2gas treatment can be a potential effective method of pathogen reduction for fresh fruits and vegetables.  相似文献   

6.
This study evaluated chemical tenderizers and cooking methods to inactivate Escherichia coli O157:H7 in ground beef patties (model system for non-intact beef). Ground beef was inoculated with E. coli O157:H7 and mixed with (i) nothing (control), (ii) calcium chloride (CC) and flavoring agents (FA), (iii) CC, FA, and acetic acid (AA), (iv) sodium chloride (SC), sodium tripolyphosphate (ST), and potassium lactate (PL), and (v) the combination of SC, ST, PL, and AA. Patties were stored in aerobic or vacuum bags at − 20, 4, and 12 °C. Samples were grilled, broiled, or pan-fried to 60 or 65 °C. Total bacterial and E. coli O157:H7 populations remained unchanged during storage. Broiling was more effective in reducing E. coli O157:H7 than grilling and pan-frying, and acidified tenderizers reduced E. coli O157:H7 more than non-acidified tenderizers in broiling. Higher reductions were observed at 65 °C than 60 °C in broiled and grilled samples. These results indicate that acidified tenderizers and broiling may be useful in non-intact beef safety.  相似文献   

7.
Abstract: Cabbage is the main material of coleslaw, a popular side dish in Korea as well as many other countries. In the present study, the combined effect of temperature (15, 25, and 35 °C) and relative humidity (60%, 70%, and 80%) on the growth of Escherichia coli O157:H7 on cabbage was investigated. The polynomial models for growth rate (GR), lag time (LT), and maximum population density (MPD) estimated from the Baranyi model were conducted with high coefficients of determination (R2> 0.98). Subsequently, performance and reliability of the models were assessed through external validation, employing three indices as bias factor (Bf), accuracy factor (Af), and the standard error of prediction expressed in percentage (%SEP). The Bf, Af, and %SEP values of the predictive models for GR were 1.008, 1.127 and 18.70%, while 1.033, 1.187 and 20.79% for LT and 0.960, 1.044 and 5.22% for MPD, respectively. The results demonstrated that the developed secondary models showed a good agreement between the observed and predicted values. Therefore, the established models can be suitable to estimate and control E. coli O157:H7 growth risk on cabbage at some steps from farm to table in Korea as a valuable tool. Practical Application: The combined effect of temperature and relative humidity on the growth or survival of Escherichia coli O157:H7 on cabbage was investigated. The validated predictive models are qualified to provide good predictions for E. coli O157:H7 growth, which can help to conduct the quantitative microbiological risk assessment (QMRA) of E. coli O157:H7 on cabbage from farm to table in Korea.  相似文献   

8.
Escherichia coli O157:H7 is an important foodborne pathogen, and foods of bovine origin and fresh produce have been linked to outbreaks. Real-time multiplex PCR assays were developed to detect E. coli O157:H7 in different foods. Apple cider and raw milk (25 ml) and ground beef and lettuce (25 g) were inoculated with 2 or 20 colony-forming units (CFU) of E. coli O157:H7 380-94 and subjected to enrichment in RapidChek E. coli O157:H7 broth at 42°C. One milliliter of the enrichments was removed at 8 and 20 h, and following DNA extraction, real-time multiplex PCR assays targeting the stx 1, stx 2, and wzy O157 genes in combination with probes and primers targeting either the fliC h7 or the eae genes were performed using OmniMix HS beads and the SmartCycler. The sensitivity of the real-time multiplex PCR assay was about 225 CFU/PCR. E. coli O157:H7 was detected (fluorescent signal generated for all gene targets) in apple cider, raw milk, lettuce and ground beef samples inoculated with 2 or 20 CFU/g or 25 ml after both 8 and 20 h of enrichment. Enrichments of uninoculated food samples were negative using the multiplex PCR targeting the stx 1, stx 2, wzy O157, and eae genes; however, using the assay targeting the stx 1, stx 2, wzy O157, and fliC h7 gene combination, a positive result was always obtained for the fliC h7 gene using uninoculated ground beef enrichments. Use of other primer sets targeting the fliC h7 gene gave similar results. The real-time multiplex PCR assays targeting the stx 1, stx 2, eae, and wzy O157 or the fliC h7 genes are sensitive and specific and can be used for the detection of E. coli O157:H7 in food, except that the fliC h7 gene may not be a suitable target for the detection of E. coli O157:H7 in ground beef.  相似文献   

9.
The influence of storage temperature (4, 10, 15, 20, 25, and 30 °C) on the growth of Escherichia coli O157:H7 in beef untreated (control) and treated by acidic electrolyzed oxidizing water (AcEOW) or slightly acidic electrolyzed oxidizing water (SAcEOW) was examined. A Baranyi model was employed to describe growth parameters such as specific growth rate (SGR) and lag time (LT) as a function of storage temperature. SGR increased and LT declined with rising temperatures in all samples. There were no significant differences between the SGR and LT values obtained from beef treated with AcEOW or SAcEOW. Secondary models were established for SGR and LT to evaluate the effects of storage temperature on the growth kinetics of E. coli O157:H7 in treated and untreated beef. Mathematical evaluation was carried out to validate the performance of the developed models.  相似文献   

10.
The effect of trans-cinnamaldehyde (TC) on the inactivation of Escherichia coli O157:H7 in undercooked ground beef patties was investigated. A five-strain mixture of E. coli O157:H7 was inoculated into ground beef (7.0 log CFU/g), followed by addition of TC (0, 0.15, and 0.3%). The meat was formed into patties and stored at 4 °C for 5 days or at −18 °C for 7 days. The patties were cooked to an internal temperature of 60 or 65 °C, and E. coli O157:H7 was enumerated. The numbers of E. coli O157:H7 did not decline during storage of patties. However, cooking of patties containing TC significantly reduced (P < 0.05) E. coli O157:H7 counts, by >5.0 log CFU/g, relative to the reduction in controls cooked to the same temperatures. The D-values at 60 and 65 °C of E. coli O157:H7 in TC-treated patties (1.85 and 0.08 min, respectively) were significantly lower (P < 0.05) than the corresponding D-values for the organism in control patties (2.70 and 0.29 min, respectively). TC-treated patties were more color stable and showed significantly lower lipid oxidation (P < 0.05) than control samples. TC enhanced the heat sensitivity of E. coli O157:H7 and could potentially be used as an antimicrobial for ensuring pathogen inactivation in undercooked patties. However detailed sensory studies will be necessary to determine the acceptability to consumers of TC in ground beef patties.  相似文献   

11.
Media for detecting and enumerating healthy as well as heat-injured cells ofEscherichia coliO157:H7 in foods are highly desired. This study was conducted to evaluate the performance of eight selective and two non-selective direct plating agar media for their ability to recoverE. coliO157:H7 cells from unheated and heated ground beef, and to compare the ability of five enrichment broths to recoverE. coliO157:H7 cells from heated ground beef. Ground beef was incoulated withE. coliO157:H7 and heated at 56°C for up to 30 min. Each agar was evaluated for its ability to support colony formation byE. coliO157:H7 surviving heat treatment, and each enrichment broth was evaluated for its ability to recover low numbers of surviving cells. Of the selective media tested, modified eosin methylene blue agar (MEMB) and RainbowTMagar O157 supported recovery of significantly (P≤0·05) higher numbers of heat-stressed cells ofE. coliO157:H7, regardless of heating time. CHROMagarTMO157, sorbitol MacConkey agar (SMA) supplemented with cefixime and potassium tellurite (CT-SMAC), and SMA supplemented with cefixime and rhamnose (CR-SMAC) performed less favorably, even in recovering cells ofE. coliO157:H7 that had not been subjected to heat stress. SMA and BCMTMO157:H7 agar were similar to CT-SMAC and CR-SMAC in their ability to recoverE. coliO157:H7 from heated beef. Tryptone bile X-glucuronide (TBX) agar performed significantly better than these media, but was inferior to MEMB agar and RainbowTMagar O157:H7. Enrichment using tryptone soya broth with novobiocin or a procedure using brain–heart infusion and tryptone phosphate broths recovered the highest population of heat stressedE. coliO157:H7. EZ ColiTMenrichment broth was inferior to other broths in resuscitating injured cells and supporting subsequent growth.  相似文献   

12.
The effects of plant compounds on Escherichia coli O157:H7 and two major heat-induced heterocyclic amines (HCAs) MeIQx and PhIP in grilled ground beef patties were determined. Ground beef with added apple and olive extracts, onion powder, and clove bud oil was inoculated with E. coli O157:H7 (107 CFU/g) and cooked to reach 45 °C at the geometric center, flipped and then cooked for another 5 min. Cooled samples were taken for microbiological and HCA analyses. Olive extract at 3% reduced E. coli O157:H7 to below detection. Reductions of up to 1 log were achieved with apple extract. Olive and apple extracts reduced MeIQx by up to 49.1 and 50.9% and PhIP by up to 50.6 and 65.2%, respectively. Onion powder reduced MeIQx and PhIP by 47 and 80.7%, respectively. Inactivation of E. coli O157:H7 and suppression of HCAs in grilled meat were achieved by optimized amounts of selected plant compounds.  相似文献   

13.
Escherichia coli O157:H7 attached to beef-contact surfaces found in beef fabrication facilities may serve as a source of cross-contamination. This study evaluated E. coli O157:H7 attachment, survival and growth on food-contact surfaces under simulated beef processing conditions. Stainless steel and high-density polyethylene surfaces (2 × 5 cm) were individually suspended into each of three substrates inoculated (6 log CFU/ml or g) with E. coli O157:H7 (rifampicin-resistant, six-strain composite) and then incubated (168 h) statically at 4 or 15 °C. The three tested soiling substrates included sterile tryptic soy broth (TSB), unsterilized beef fat-lean tissue (1:1 [wt/wt]) homogenate (10% [wt/wt] with sterile distilled water) and unsterilized ground beef. Initial adherence/attachment of E. coli O157:H7 (0.9 to 2.9 log CFU/cm2) on stainless steel and high-density polyethylene was not affected by the type of food-contact surface but was greater (p < 0.05) through ground beef. Adherent and suspended E. coli O157:H7 counts increased during storage at 15 °C (168 h) by 2.2 to 5.4 log CFU/cm2 and 1.0 to 2.8 log CFU/ml or g, respectively. At 4 °C (168 h), although pathogen levels decreased slightly in the substrates, numbers of adherent cells remained constant on coupons in ground beef (2.4 to 2.5 log CFU/cm2) and increased on coupons in TSB and fat-lean tissue homogenate by 0.9 to 1.0 and 1.7 to 2.0 log CFU/cm2, respectively, suggesting further cell attachment. The results of this study indicate that E. coli O157:H7 attachment to beef-contact surfaces was influenced by the type of soiling substrate and temperature. Notably, attachment occurred not only at a temperature representative of beef fabrication areas during non-production hours (15 °C), but also during cold storage (4 °C) temperatures, thus, rendering the design of more effective sanitation programs necessary.  相似文献   

14.
The objective of the present study was to obtain data about cooking time and temperature of kiymali pide in the restaurants and to investigate thermal inactivation of E. coli O157:H7 during experimental kiymali pide making. A field study was conducted in randomly selected 23 of 87 pide restaurants. Processing parameters including oven temperature, cooking period and post-cooking temperature were determined. Kiymali pide samples were prepared using ground beef filling experimentally inoculated with E. coli O157:H7 (7.6 log10 CFU/g). Pide samples were cooked at a conventional oven at 180 °C for 180, 240, 270, 300 and 330 s. Results of the current study suggest that cooking kiymali pide at 180 °C for at least 330 s (5.5 min) may provide sufficient food safety assurance (≥ 6 log10 CFU/g) for E. coli O157:H7.  相似文献   

15.
The effect of high-intensity pulsed electric fields (HIPEF) on the Salmonella Enteritidis and Escherichia coli O157:H7 populations inoculated in apple, pear, orange and strawberry juices as influenced by treatment time and pulse frequency was investigated. Combinations of HIPEF (35 kV/cm, 4 μs pulse length in bipolar mode without exceeding 40 °C) with citric acid or cinnamon bark oil against these pathogenic microorganisms in fruit juices were also evaluated. Treatment time was the more influential factor on the microbial reduction in all the fruit juices analyzed. S. Enteritidis and E. coli O157:H7 were reduced by more than 5.0 log10 units in orange juice treated by only HIPEF; whereas strawberry, apple and pear juices were pasteurized when HIPEF was combined with citric acid at 0.5, 1.5, 1.5%, respectively, or cinnamon bark oil at 0.05, 0.1 and 0.1%, respectively. Synergistic and additive killing effects against S. Enteritidis and E. coli O157:H7 in fruit juices by combining treatments were observed.

Industrial relevance

The use of high-intensity pulsed electric fields treatment as a non-thermal pasteurization method in combination with organic acids or essential oils is an effective process for eliminating S. Enteritidis and E. coli O157:H7 populations in fruit juices upper 5.0 log10 reductions. Therefore, combinations of those treatments may help to ensure the microbiological safety in juice products, and to reduce the risk of food-borne illness caused by the consumption of these kinds of foods.  相似文献   

16.
《Food microbiology》2004,21(5):493-499
The pathogen thermal lethality in ground and formulated beef/turkey was evaluated for a cocktail of E. coli O157:H7, Salmonella, and Listeria monocytogenes, respectively. At a temperature range of 55–70°C, the heat resistance of L. monocytogenes was not significantly (at α=0.05) different from those of Salmonella. The heat resistance of L. monocytogenes at 55–70°C was 45–81% higher than that of E. coli O157:H7. In this study, a practical approach was developed to predict log10(CFU/g) reduction of E. coli O157:H7, Salmonella, or L. monocytogenes in ground, formulated, and formed beef/turkey links that were cooked in an air impingement oven. The predictions of pathogen thermal kills in the links were verified via the inoculation studies for at least a 7 log10(CFU/g) reduction of E. coli O157:H7, Salmonella, and L. monocytogenes.  相似文献   

17.
The fate of various Escherichia coli O157:H7 strains including 933, A8993-C32, MF6707, 18731A, EK250 and EF304 during the fermentation and storage of diluted cultured milk drink fermented with Lactobacillus casei ssp.casei CCRC 11197 or L. delbrueckii ssp. bulgaricus CCRC 14009 were investigated in this study. E. coli O157:H7, regardless of strains, grew rapidly in skim milk and reached a maximum population of c. 8·0–9·0 log cfu ml−1after c. 24 h of cultivation in mixed cultures with L. casei ssp. casei or L. delbrueckii ssp. bulgaricus. However, the population of E. coli O157:H7, depending on the strain and the lactic acid bacteria present, declined as cultivation proceeded further. With the inoculation of c. 5·0 log cfu ml−1E. coli O157:H7, viable cells of this pathogen reduced to non-detectable level in the non-sugar-added cultured drink (pH 3·5) prepared with L. delbrueckii ssp.bulgaricus after one day storage at 7°C. Depending on the strains, E. coli O157:H7 survived in the non-sugar-added cultured drink prepared with L. casei ssp. casei for a period of <1–4 days. Adding sugar to cultured drink extended the survival period of E. coli O157:H7. The extent of the sugar-protective effect varied with different strains of E. coli O157:H7 and the amount of sugar added to the drink.  相似文献   

18.
《Food microbiology》2003,20(2):243-253
The effects of antimicrobial substances including nisin, acetic acid, lactic acid, potassium sorbate and chelators (disodium ethylenediamine tetraacetic acid [EDTA] and sodium hexametaphosphate [HMP]), alone or in combination and, with or without immobilization in calcium alginate gels, on the growth of Escherichia coli O157:H7 in ground beef were investigated. Results showed that acetic acid and potassium sorbate could inhibit the growth of E. coli O157:H7 effectively at 10°C and at 30°C. Both EDTA and HMP did not halt the growth of E. coli O157:H7. In an antimicrobial system immobilized with calcium alginate, most of the antimicrobials could not inhibit the growth of E. coli O157:H7 in ground beef at 10°C and at 30°C, with the exception of acetic acid and lactic acid. Immobilization did not enhance the effectiveness of acetic acid against E. coli O157:H7 in ground beef at 10°C and at 30°C (P>0.05) but it did enhance the effectiveness of lactic acid at 10°C. In a system combining different antimicrobials, treatment with nisin /EDTA or nisin/potassium sorbate at 10°C revealed a significantly lower population change of E. coli O157:H7 compared to samples treated with nisin, EDTA or potassium sorbate alone. The use of calcium alginate immobilization further enhanced the effectiveness of the combination system of nisin/EDTA, nisin/acetic acid and nisin/potassium sorbate on the growth of E. coli O157:H7 in ground beef at 10°C but it was not effective at 30°C.  相似文献   

19.
《Food microbiology》2001,18(5):511-519
A study was undertaken to obtain information on survival of Escherichia coli O157:H7 in ground beef subjected to heat treatment, refrigeration and freezing and on survival of E. coli O157:H7 in fermented sausage kept at 7°C and 22°C. For the challenge test, a mixture of E. coli O157:H7 strains (EH 321, EH 385, EH 302) was used and enumeration was performed on an isolation medium suitable for recovery of stressed organisms: modified Levine's eosin methylene blue agar (mEMB). Heat resistance of E. coli O157:H7 decreased after pre-incubation at a reduced temperature.Escherichia coli O157:H7 was more susceptible to heat inactivation after storage at 7°C and die-off was even more enhanced if cultures were frozen prior to heat inactivation. The enhanced reduction of the pathogen at 56°C after prior storage under refrigeration was confirmed in a test with inoculated ground beef.Escherichia coli O157:H7 was able to survive in ground beef at 7°C for 11 days and at −18°C for 35 days showing maximal one log reduction during the storage period. Thus, ground beef contaminated with E. coli O157:H7 will remain a hazard even if the ground beef is held at low or freezing temperatures. At both 7°C and 22°C, a gradual reduction of E. coli O157:H7 was noticed in fermented sausage over the 35 days storage period resulting in a 2 log decrease of the high inoculum (106cfu 25 g−1). For the low inoculum (103cfu 25 g−1) a 2·5 log reduction was obtained in 7 and 28 days storage at respectively 22 and 7°C. Application of good hygienic practices and implementation of HACCP in the beef industry are important tools in the control of E. coli O157:H7.  相似文献   

20.
The utilization of sub-lethal decontamination treatments gains more and more interest due to the increased consumers' demand for fresh, minimally processed and convenient food products. These products rely on cold chain and hurdle (combination) technology to provide microbiological safety and quality during their shelf life. To investigate the ability of surviving cells to resuscitate and grow in a food simulating environment, sub-lethal decontamination treatments were coupled with subsequent storage under sub-optimal growth conditions. For this purpose chlorine dioxide (ClO2) and neutralized electrolyzed oxidizing water (NEW)-treated cultures of Escherichia coli O157:H7 were inoculated in TSB-YE of pH 5.8 and aw 0.99, and stored at 10 °C, 12.5 °C and 15 °C, under four different atmospheres (0%, 30% and 60% CO2 balanced with N2, and air). Due to the severity of injury, lactic acid-treated cells were inoculated in TSB-YE pH 7.0. Data obtained reveal that the fraction of sub-lethally injured E. coli O157:H7 undergoes an additional inhibitory effect during the storage period under of sub-optimal conditions. Observed extension in the lag growth phase was a direct consequence prior sub-lethal injury. The effects of liquid ClO2 and NEW were less pronounced in comparison to lactic acid. The current study signifies the potential utilization of appropriate combination of different extrinsic and intrinsic factors in the elimination or growth inhibition of food-borne pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号