首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 48 毫秒
1.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在2050nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

2.
首次应用机械振动研磨法在室温条件制备纳米活性炭电极材料,经过30 min研磨后,得到了粒度分布在30~50 nm之间的纳米活性炭(nm-AC),研究表明,这种纳米活性炭的结晶性得到了明显增强和改善,且孔径分布更趋于合理。并用溶胶-凝胶方法合成了掺杂氧化铋的纳米二氧化锰(nm-Bi-MnO 2),将其与制备的纳米活性炭制成超级电容器所需的复合电极材料。与10%二氧化锰复合的纳米活性炭电极具有最佳的充放电性能,尤其是在掺杂氧化铋的情况下比电容能量达到308 F·g-1,且随着电流增大没有显著的衰减。与此同时,用机械振动研磨法将二氧化锰与活性炭的混合物进行研磨改性,电化学分析表明,经机械振动研磨改性的二氧化锰的比电容相对较大,具有进一步提高电极材料性能的潜力。  相似文献   

3.
吴沁如  李海红  张腾 《现代化工》2024,(3):168-174+181
以煤质活性炭(AC)为研究对象,通过(NH4)2S2O8氧化改性提高其电吸附性能。将活性炭材料制备成电极并在电容去离子技术(EST)下进行实验,对改性前后活性炭的表面形貌、表面官能团、孔结构变化进行对比分析。结果表明,活性炭经过1.5 mol/L的(NH4)2S2O8改性后比电容最大;改性后的活性炭电极比电容增大,改性后相比改性前孔容、平均孔径均下降;改性后的材料表面光滑、杂质较少、孔隙结构发达、含氧官能团增多;利用单因素和Box-Behnken响应面法得到改性后材料制备的最佳工艺为:1.59 g的AC在54.22℃下氧化改性4.93 h,电极比电容为259.850 F/g,改性后电极的CV曲线证明由于其含有赝电容从而使电化学性能得到提高。  相似文献   

4.
通过水热反应制备活性炭微球(ACMS),并在炭微球表面原位生成二氧化锰(MnO_2),合成炭微球/二氧化锰(ACMS/MnO_2)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对复合材料结构进行表征;通过恒流充放电等对复合材料的电化学性能进行研究。测试结果表明,反应中生成的MnO_2均匀包覆在ACMS表面,得到了直径约为0.2~0.3μm的球体。复合材料ACMS/MnO_2的首次放电比容量为316.5F·g-1,循环100次后的容量保持率为82.6%,优于单一的MnO_2。  相似文献   

5.
通过改性二氧化锰和氧化石墨烯片之间的静电自组装制备了层状的rGO/MnO2复合纳米材料。通过XRD分析材料的晶体结构,用扫描电镜观察材料的微观表面形貌。这种材料用来研究其电化学电容性能,结果表明这种纳米复合材料显示出很好的电容性能(在0.2 A/g的电流密度下可达246 F/g)。此外,在2 A/g的电流密度下循环1000次后容量保持率为91%。材料的性能提升是因为复合材料中二氧化锰纳米棒和石墨烯片层很好的贴合,而石墨烯片的加入也大大提高了材料的导电性。  相似文献   

6.
以三维泡沫镍(NF)为模板,在不添加模板剂的条件下,通过电沉积法沉积石墨烯(G),再采用水热合成制备纳米片二氧化锰(Mn O_2),得到自支撑电极复合材料G/Mn O_2/NF,改善其作为电极材料的电化学性能。用X射线衍射(XRD)、拉曼光谱(Raman)和扫描电子显微镜(SEM)对复合材料的微观结构和表面形貌进行分析,通过循环伏安(CV)、恒电流充放电(GCD)、交流阻抗(EIS)测试了电极复合材料的电化学性能。结果表明:在电流密度为1 A/g的条件下,复合电极材料的比电容达到722 F/g,经过1 000次循环后比电容保持率为97%。  相似文献   

7.
以棉纤维作为基板,通过油浴染色方式于棉纤维基板上负载二氧化锰,再经过冷冻干燥和高温碳化处理制得超级电容器用二氧化锰/碳柔性电极材料。通过XRD和SEM表征,直径为30-50 nm,长度为400-600 nm的纳米棒状二氧化锰均匀分散在碳化棉纤维的表面上。该柔性电极于电压范围为0-1 V,电流密度为0.1 A g~(-1)条件下进行三电极电化学性能测试,得到比电容为80.6 Fg~(-1),表现出较好的电化学性能。  相似文献   

8.
MnO2的制备及其在电化学电容器中的应用   总被引:8,自引:0,他引:8  
在不同的pH值下,以KMnO4氧化Mn(NO3)2分别合成2种化学MnO2. 晶体结构和晶型经X射线衍射仪和X射线扫描电镜检测,表明pH值对晶体形成有一定的影响. 在-0.3~0.6 V(相对Hg/HgO电极电位)范围用循环伏安法研究两种材料的电化学性能,结果显示它们具有静电电容特征. 活性炭作为对电极组成混合型电化学电容器与MnO2相同电极对称型电化学电容器相比,工作电压窗口和比电容都得到了提高. 恒流充放电显示,对称结构电极比电容分别为262和302 F/g;不对称结构电极比电容为348和342 F/g,具有较好的大电流放电能力和循环寿命.  相似文献   

9.
探究三电极工作体系下电压区间及开路电压对电化学除盐性能研究。选择活性炭、TiO_2/活性炭两种电极材料作为研究对象,依据体系的开路电压,设置不同的工作电压区间,采用循环伏安法获得电极的比电容值。结果表明,工作电压区间越大,电极比电容越大;越远离开路电压的电压区间,电极比电容越大。同时,TiO_2在特定烧结温度下,具有特定的晶形结构并呈现出不同的表面电位。300℃时,TiO_2颗粒表面电位最小(负值),Ti O_2/活性炭电极比电容最大。由此可见,改变电极材料的工作电压区间,可有效提高电化学除盐效率。  相似文献   

10.
将氧化石墨(GO)还原为石墨烯(GNS),以高锰酸钾(KMnO_4)和硫酸锰(MnSO_4)为锰源,在石墨烯基体上合成二氧化锰/石墨烯(MnO_2/GNS)复合电极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)对材料的微观形貌和晶体结构进行表征;将电极材料制备成复合电极片并组装成对称型超级电容器,采用恒流充放电对其进行电化学性能测试。结果表明,复合电极材料在5A·g~(-1)的电流条件下,比容量达到291.5 F·g~(-1),在循环200次后电容保持率达到95.6%,具有良好的电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号