首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
电火花加工的加工表面与切削加工表面有很大的区别。但是,目前电火花加工工件的表面粗糙度仍然沿用切削加工表面粗糙度的评定方法和测试手段,这样不能准确地反映火花加工后工件表面的真实形貌。本文根据电火花加工的特点,提出电火花加工工件表面粗糙度的评定参数和测试方法。  相似文献   

2.
航空航天工业中,钛合金和镍基合金是飞机结构和发动机部件的重要金属材料.这些关键结构部件的制造需达到高可靠性要求,表面完整性是用于评价精加工表面质量的最相关参数之一.钛合金和镍基合金在加工过程中产生的残余应力和表层变化对其安全性和可持续性至关重要.本文综述了钛合金和镍基合金表面完整性的研究进展,并报道了许多不同类型的表面完整性问题,通过研究表面残余应力、白层和加工硬化层以及微观结构的改变,以提高最终产品的表面质量.许多参数影响工件的表面质量,其中切削速度、进给速度、切削深度、刀具几何形状和加工工艺、刀具磨损和工件性能是最值得研究的问题之一.为了更好地理解加工引入的表面完整性问题,需要通过实验和经验研究以及基于分析和有限元建模的方法.然而,在目前的技术水平上,仍然缺乏一种基于物理过程的、适用于工业过程的全面、系统的方法.研究结果表明,在解释多种参数对钛合金和镍基合金加工效果的影响的同时,需要建立与可靠实验相一致的预测物理模型.  相似文献   

3.
采用铸渗技术在铸钢ZGCr5Mo试样表面制备了镍基合金渗层,渗层的厚度为0.6—1.2 mm,考察了镍基合金渗层的热疲劳行为,用扫描电镜(SEM)、X射线衍射(XRD)对热疲劳循环后的渗层表面进行了形貌观察与成分分析。结果表明:在热循环次数低于20次时,表面仅发生了氧化现象,当热循环次数超过90次时,渗层表面出现微裂纹,随着循环次数的增加,在渗层与基体的侧表面上出现贯穿渗层与基体的微裂纹以及在渗层与基体的界面处的表面氧化膜层出现了平行于渗层表面以及发散的微裂纹;随着镍基合金渗层厚度的增加,出现微裂纹的热循环次数略有降低。表面的氧化膜层主要为镍、铬的氧化物以及镍铬的复杂氧化物。  相似文献   

4.
本文报道了使用正交试验设计法寻求合适的磨削工艺参数的实验,揭示了磨削工艺条件对磨削表面完整性的影响。  相似文献   

5.
研究了新型镍基高温合金中Ta、Zr和Hf的分析技术,并探讨了ICP-原子发射光谱法中的某些影响因素及其校正。该分析方法用于合金样品分析取得了满意的效果。  相似文献   

6.
返回料比例对镍基高温合金K465组织和性能的影响   总被引:1,自引:0,他引:1  
研究了返回料应用对K465合金成分、组织和主要力学性能的影响.结果表明,返回料合金成分与新料合金相似.返回料的加入对合金中γ′相没有明显影响;随返回料加入比例的增高,合金中显微疏松逐渐加重,100%返回料合金疏松明显多于新料合金;当返回料比例在80%以内时,合金中碳化物主要呈骨架状;而100%返回料合金中碳化物呈颗粒状,但碳化物形态可能主要受凝固工艺条件影响.当返回料比例不超过80%时,返回料的加入对合金的高温持久性能和室温拉伸强度没有明显影响,但室温延伸率有所下降;100%返回料合金的力学性能明显下降,其高温持久寿命和室温延伸率已不能满足技术条件要求.  相似文献   

7.
一种镍基单晶高温合金的表面再结晶研究   总被引:9,自引:1,他引:8  
采用X射线衍射、金相及扫描电镜,研究了一种镍基单晶高温合金再结晶的产生以及再结晶层的组织变化。结果表明在铸态γ'相溶解温度以下,再结晶是以不连续有胞状形式发生的;在此温度以上,再结晶主要形成结晶晶粒。进一步提高温度,再结晶晶粒聚集长大,再结晶层以连续的方式向内生长。铸态γ'相的溶解是形成再结晶晶粒的重要条件。  相似文献   

8.
以SiC纳米液为工作介质,研究高速走丝电火花线切割加工表面的特性.采用两步法制备SiC纳米流体,并与乳化液或去离子水混合作为纳米工作介质,多次切割SKH-51高速钢.利用扫描电子显微镜(SEM)和原子力显微镜(AFM)分析表面微观形貌和纳米面粗糙度,利用Taylor-Hobson-50粗糙度仪测量宏观表面粗糙度,利用能谱仪(EDS)检测表层的化学成分.SiC/乳化液纳米工作液、常规乳化液、SiC/去离子水纳米工作液三种不同介质加工样品的纳米面粗糙度Sq分别为64.7 nm、135 nm和22.8 nm,重铸层厚度分别为11μm、16μm、14μm,宏观表面粗糙度Ra分别为1.4640μm、1.7923μm和1.3149μm.与常规乳化液加工相比,SiC纳米工作液均无明显的电极丝放电痕迹,但SiC/去离子水纳米工作液有明显的黑白条纹,表面光洁度劣于SiC/乳化液纳米工作液.SiC纳米工作液加工的表面均未呈现蜂窝状,陨石坑大而浅,微观裂纹均不明显,孔洞呈细针孔状,其中SiC/乳化液纳米工作液加工的表面针孔更细而少.SiC纳米工作液能有效提高高速走丝电火花线切割加工表面的质量.  相似文献   

9.
贾进铎  张宝松 《材料工程》1998,(9):42-45,48
研究了新型镍基高温合金中微量硼的分析技术,并探讨了氟硼酸根离子选择性电极测定微量硼的某些影响因素及其消除方法。该分析方法用于合金样品分析取得了满意的效果。  相似文献   

10.
陈鸿均 《材料工程》1998,(4):21-22,27
在对IN738LC合金的含保载低周疲劳试验中发现,蠕变变形的增加导致了疲劳寿命的降低,在对试样的微观检验中未见有典型晶界孔洞型蠕变损伤,而多见的碳化物及晶界的氧化,所有的裂纹都在试样表面萌生并沿着扩展,因此,在蠕变载荷下晶界氧化是一种可能的蠕变损伤,这里运用Danzer关系讨论了损伤的机理,并对实验结果进行了较理想的解释。  相似文献   

11.
Abstract

The aim of this study was to investigate the fatigue limit of the electric discharge machined aluminum alloy 2024 T6. Machining was performed at 3, 6, 9, and 12 A discharge current values while all other parameters were kept constant. The fatigue tests were performed on a four-point rotating bending machine at the frequency of 50 Hz and at ambient temperature. Fatigue limits at 107 cycles were determined using staircase (up-and-down) method and the obtained data was analyzed statistically. For reference purposes, fatigue strength of the conventionally turned specimens was also found by the same technique. The EDM surface is characterized by its morphology, roughness, hardness, and thickness of the resolidified layer. The effects of discharge current values on these surface characterizing parameters and subsequent influence on fatigue limit have been discussed.  相似文献   

12.
Machining of metal matrix composites (MMCs) reinforced with low-density waste byproduct particulates using nonconventional processes is relatively new in the field of material science. However, more attention has been paid for investigations on nontraditional machining of such MMCs currently as the conventional machining may generate additional complexity. This study investigates the wire electro-discharge machining behavior of compo-casted cenosphere-reinforced AA6061 alloys. Cu60Zn40-coated copper wire was used as electrode material. The investigation demonstrates that melting and vaporization are the dominant machining mechanisms. The weight fraction of cenosphere was observed to be the most substantial process variables affecting the cutting rate, on-time, and the wire speed of tool were the next in the order of importance. The presence of nonconductive cenosphere particles along with thermal degradation of the aluminum matrix composites leads to degrading processed machined surface quality. The issues related to wire breakage and poor quality of the machined surface, surface finish, and dimensional accuracy are described in detail.  相似文献   

13.
ABSTRACT

While selective laser melting (SLM) offers design freedom of metal parts with much less material consumption, there exist several limitations, including high surface roughness, low-dimensional accuracy, and high tensile residual stresses. To make functional parts with high form accuracy and superior surface integrity, an as-SLM part needs finishing to remove the deposited surface material. The integration of machining and SLM creates a hybrid manufacturing route to overcome the inherited limitations of SLM. However, little study has been done to characterise surface integrity of an as-SLM part followed by machining (e.g. hybrid SLM-milling). In this paper, surface, integrity including surface roughness, microstructure, and microhardness, have been characterised for IN718 samples processed by the hybrid process. It has been found that microhardness varies with the scan direction and the use of coolant in the subsequent milling, and surface integrity can be significantly improved by the hybrid SLM-milling route.  相似文献   

14.
In this study, electrical discharge machining has been used to machine insulating zirconia via the assisting electrode method. The process parameter optimization was investigated by combining the Taguchi method with grey relational analysis. The application of Taguchi–grey relational analysis is proven to effectively improve the performance of electrical discharge machining in drilling insulating zirconia. The results of this analysis indicate that the final optimal process parameters are a peak current of 8 A, a pulse duration of 16?µs, a duty cycle of 0.5, and a flushing pressure of 6?MPa. Additionally, the material removal rate, electrode wear rate, and hole taper ratio increase by 39%, 1.5%, and 1.3%, respectively, which improves the grey relational grade by 6.8%. The electrical resistance test confirms that the conductivity of the conductive layer obtained using the final optimal process parameters is better than that of the conductive layer obtained using the initial optimal process parameters. Energy spectrum analysis reveals that the conductive layer is composed of C, Cu, Zn, Zr, and O. Analysis of variance shows that the most significant component of the multi-responses is the peak current, with a 51.4% contribution.  相似文献   

15.
In this article the results concerned influence of processing conditions of the wire electrical discharge machining and vibro‐abrasive machining on the surface layer and morphology of samples made of hard machinable materials used in aircraft industry like: Titanium 5553 β, Inconel 617, Hastelloy X and Magnesium AZ31 have been presented. For this purpose the cubic and cylindrical samples made of hard machinable alloys have been prepared using optimal electric parameters of wire‐cut electrical discharge machining and finally they have been polished using circular vibratory finishing technology and different ceramic shaped stones.  相似文献   

16.
Micro electrical discharge machining (µEDM) is playing a significant role in the world of miniaturization, especially in micro electro mechanical systems, biomedical devices, micro die/molds, etc. Micro electrical discharge milling (µED-milling) is a variant of µEDM used for producing complex 3D features with a simple shaped tool. The material removal mechanism of µEDM depends on electro-thermal energy between the tool electrode and workpiece. µEDM inherently being a non-contact machining process, leads to produce miniaturized features in hard to machine materials. Besides erosion of the workpiece material, intrinsic feature of the process leads to tool wear (TW) and introduces dimensional inaccuracy in the micro features. Thus, it is essential to know the factors influencing the TW, and thereby compensate the TW to achieve dimensional stability of the machined features. The critical factors affecting the wear phenomenon of a tool and various techniques applied to compensate TW in µED-milling along with future trends of their application are presented. The key issues of µED-milling and challenges faced in implementing a TW compensation technique are highlighted. The concept of intentional wear of tool electrode and associated advantages in EDM is also demonstrated.  相似文献   

17.
This paper presents an experimental investigation to ascertain the parametric impact of abrasive water jet machining on the surface quality of Inconel 718 material. Experiments were designed according to response surface methodology-box Behnken design by maintaining three levels of four process parameters—abrasive flow rate, water pressure, stand-off distance and traverse speed. The surface irregularity is measured during machining. The design expert software was used to establish an optimized mathematical model of process parameters for achieving the required surface roughness. Desirability function has also been used to optimize the process parameters. The confirmation experiments validate the reliability and capability of the developed model. Further, the surface characteristics were analyzed through scanning electron microscope images and energy-dispersive X-ray spectroscopy.  相似文献   

18.
The present work investigates the novel route for the synthesis of Fe-Cu alloy using electric discharge machining (EDM). The Synthesis of Fe-Cu alloy is difficult by equilibrium processes because of their immiscible nature. An attempt was made to investigate the synthesis of Fe-Cu alloy by EDM process where the discharge can lead to a very high temperature and subsequent quenching to result in alloy formation. The electrode was made up of copper and die steel was used as workpiece. The characterization of generated debris was carried out by X-ray diffraction analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The nano-phase granular particles of Fe-Cu alloy were confirmed by TEM and selected area diffraction pattern analysis. SEM morphology results reveal that the generated particles were both, spherical and non-spherical shape and size ranging between 50?nm and 30?µm. The EDS analysis indicates that the spherical particles were Fe-rich and non-spherical particles were Cu-rich.  相似文献   

19.
Electrical discharge machining is used in the production of countless parts with complex geometries and micro dimensions, from many elements of industrial molds to parts of motors and pumps. Also, most of these parts are cylindrical and it is always more meaningful to study their rotational fatigue behavior to predict their response during their operation. This study concentrated on the impacts of machining parameters on the surface quality and fatigue behavior of tool steel shaped by electrical discharge turning. The results based on Taguchi methodology have shown that discharge current affects Ra and Rz more, and pulse duration more affects the mean spacing of profile irregularities, Sm. As a result of the heat affected depth in the machined region, which changes in proportional with the processing parameters, the microhardness decreased from the sample surface to the core. The maximum hardness was measured at current of 12 A, pulse duration of 3 μs and pulse interval of 7 μs. According to the fatigue tests, it was found that the fatigue life decreased with the increase in Rz and Sm values. Moreover, high microhardness and thick recast layer reduced the fatigue strength of the samples with relatively smooth surface topography.  相似文献   

20.
Abstract

The objective of this study was to investigate the effects of electrical discharge machining (EDM) process conditions on the crack susceptibility of a nickel-based superalloy. Because sequential processes are inevitable in the manufacturing industry, the effects of EDM and post-EDM processes on the crack propagation behaviour of the components need to be clearly understood. The altered material zone (AMZ) of EDM processed Hastelloy X revealed different morphology before and after solution heat treatment. Depending on the EDM dielectric fluid and the post-EDM process such as solution heat treatment, it was found that cracks existing in the recast layer could propagate into substrate when a 20% strain tensile force was applied at room temperature. In the case of the kerosene electrical discharge (ED) machined specimens, it was observed that carburisation and sharp crack propagation along the grain boundary occurred after the heat treatment. However, the deionised water ED machined specimens after heat treatment underwent oxidation and showed no crack propagation behaviour. A metallurgical evaluation of the microstructure of the AMZ was also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号