首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Pb0.4Bi1.8Sr2Ca2.2Cu3Ox (Bi-2223) precursor powder was prepared by a solid-state reaction of carbonates and oxides of lead, bismuth, strontium, calcium, and copper, and the powder was then used to fabricate silver-clad tapes by the powder-in-tube technique. Transport critical current density (Jc) values>4×104 A/cm2 at 77K and 2×105 A/cm2 at 4.2 and 27K have been achieved in short tape samples. Long lengths of tape were tested by winding them into pancake coils. Recently, we fabricated a test magnet by stacking ten pancake coils, each containing three 16m lengths of rolled tape, and tested it at 4.2, 27 and 77K. A maximum generated field of 2.6 T was measured in zero applied field at 4.2K and the test magnet generated significant self-field in background fields up to 20 T. The results are discussed in this paper.  相似文献   

2.
A multi-step process is used to fabricate Tl2Ba2Ca1Cu2O8 films on (100) LaA103 substrates. Submicron thick precursor films of Ba-Ca-Cu-O are rf magnetron sputter deposited from a single target. Film stoichiometry is measured by ion beam backscattering spectroscopy. Deficiencies of the alkaline earths that are found in the precursor films are then compensated for by the addition of appropriate CaF2 and/or BaF2 films onto the surface of the precursor film. Post deposition annealing of the films is then done in an atmosphere of thallium oxide and oxygen in order to form the superconducting phases. The annealed films are examined using x-ray diffraction (XRD), an ac inductance technique, and critical current in an external magnetic field. XRD shows the c-axis length of the superconducting phase to increase as the overall film stoichiometry approaches 2212. The transition widths measured by inductive coupling weakly correlate with 77 K critical current measurements. Our best critical current results are 1.5*106 amps/ cm2 for a film measured at 4 K in an 8 T magnetic field (parallel to the films' c-axis).  相似文献   

3.
Ruthenium nanoparticles have been prepared by hydrogenation of the complex Ru(COD)(COT) (COD = 1,5‐cyclooctadiene, COT = 1,3,5‐cyclooctatriene) in the presence of i) heavily fluorinated solid compounds as stabilizers (para‐bis(perfluorooctyl)benzene, 2,4,6‐tris(perfluorooctyl)aniline, and the non‐functionalized 11H,11H,12H,12H,13H,13H,14H,14H,15H,15H,16H, 16H‐perfluorohexacosane (C10F21‐(CH2)6‐C10F21)); and ii) the liquid 1H,1H,2H,2H‐perfluorodecylamine. The particles have been characterized by IR spectroscopy, elemental analysis, transmission electron microscopy (TEM), high‐resolution TEM, wide‐ and small‐angle X‐ray scattering (WAXS and SAXS), and scanning electron microscopy with a field‐emission gun (SEM‐FEG). TEM images indicate the presence of aggregated small nanoparticles with a regular mean size of ca. 3 nm. These nanoparticles display the hexagonal close‐packed structure of bulk ruthenium, as shown by WAXS analysis. HRTEM and SEM‐FEG analyses reveal the tendency of the particles to self‐assemble into superstructures (spheres) that can be more or less well defined depending on the fluorinated compound and/or the reaction conditions. This behavior has been confirmed in one case by SAXS measurements attesting the presence of small nanoparticles that are closely packed into clusters.  相似文献   

4.
The crystal structure, magnetic properties, and temperature‐ and photoinduced phase transition of [{CoII(4‐methylpyridine)(pyrimidine)}2{CoII(H2O)2}{WV(CN)8}2]·4H2O are described. In this compound, a temperature‐induced phase transition from the CoII (S = 3/2)‐NC‐WV(S = 1/2) [high‐temperature (HT)] phase to the CoIII(S = 0)‐NC‐WIV(S = 0) [low temperature (LT)] phase is observed due to a charge‐transfer‐induced spin transition. When the LT phase is irradiated with 785 nm light, ferromagnetism with a high Curie temperature (TC) of 48 K and a gigantic magnetic coercive field (Hc) of 27 000 Oe are observed. These TC and Hc values are the highest in photoinduced magnetization systems. The LT phase is optically converted to the photoinduced phase, which has a similar valence state as the HT phase due to the optically induced charge‐transfer‐induced spin transition.  相似文献   

5.
The dependence of photoconductivity on the magnetic field has been studied for Si:B blocked-impurity-band (BIB) structures with the boron impurity concentration of ~1018 cm?3 in the active layer. Measurements were performed in the magnetic field B up to 30 T with the pulse length of 0.8 s in the temperature range T = 4.2?9 K, under irradiation of structures with the room-temperature background with ~1016 photons/(cm2 s) intensity. It is established that, in the longitudinal configuration and with the magnetic field parallel to the electric field, the photocurrent decreases as B increases, mainly due to a decrease in the hole multiplication factor M in the magnetic field and/or an increase in the activation energy for hopping conductivity in the active layer. At T = 4.2 K, the photocurrent can drop by a factor of several tens. At the same time, at low bias voltage V b , when M ≈ 1, and at higher temperatures, T ≈ 9 K, the photocurrent decreases no more than twofold in the field of ~30 T. It is found also that in the transverse configuration (with the magnetic field perpendicular to the electric field), the effect of the magnetic field on the photoresponse of a structure significantly increases (more than by an order of magnitude at T = 4.2 K). This fact can be explained by the accumulation of carriers in the blocking (undoped) layer of a BIB structure, which is related to increasing time of the hole flight across this layer due to high mobility of holes and strong bending of their trajectories in the transverse configuration.  相似文献   

6.
The impact of the chemical structure and molecular order on the charge transport properties of two donor–acceptor copolymers in their neutral and doped states is investigated. Both polymers comprise 3,7‐bis((E)‐7‐fluoro‐1‐(2‐octyl‐dodecyl)‐2‐oxoindolin‐3‐ylidene)‐3,7‐dihydrobenzo[1,2‐b:4,5‐b′]difuran‐2,6‐dione (FBDOPV) as electron‐accepting unit, copolymerized with 9,9‐dioctyl‐fluorene (P(FBDOPV‐F)) or with 3‐dodecyl‐2,2′‐bithiophene (P(FBDOPV‐2T‐C12)). These copolymers possess an amorphous and semi‐crystalline nature, respectively, and exhibit remarkable electron mobilities of 0.065 and 0.25 cm2 V–1 s–1 in field effect transistors. However, after chemical n‐doping with 4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI), electrical conductivities four orders of magnitude higher can be achieved for P(FBDOPV‐2T‐C12) (σ = 0.042 S cm?1). More charge‐transfer complexes are formed between P(FBDOPV‐F) and N‐DMBI, but the highly localized polaronic states poorly contribute to the charge transport. Doped P(FBDOPV‐2T‐C12) exhibits a negative Seebeck coefficient of –265 µV K?1 and a thermoelectric power factor (PF) of 0.30 µW m?1 K?2 at 303 K which increases to 0.72 µW m?1 K?2 at 388 K. The in‐plane thermal conductivity (κ|| = 0.53 W m?1 K?1) on the same micrometer‐thick solution‐processed film is measured, resulting in a figure of merit (ZT) of 5.0 × 10?4 at 388 K. The results provide important design guidelines to improve the doping efficiency and thermoelectric properties of n‐type organic semiconductors.  相似文献   

7.
Low‐cost, uniform, and monodisperse spherical particles are desirable for a variety of applications. We report the realization of uniform spherical magnesium oxide with a diameter of 10.5 μm and specific surface area of 140.9 m2 g–1 resulting from a facile seed‐induced precipitation in the presence of a trace amount of phosphate species. By optimizing the experimental parameters, the results demonstrate that the morphologies of magnesium oxide precursors are very sensitive to the amount and the sequence of addition of Mg5(CO3)4(OH)2 · 4H2O seeds, as well as the amount and type of phosphate species. These particles have also been used as a packing material for high performance liquid chromatography. In comparison with the commercial spherical silica, as‐synthesized spherical magnesium oxide exhibits excellent efficiency in the separation of polycyclic aromatic hydrocarbons, and has a larger retention to planar compounds in contrast to non‐planar ones. It is believed that this method will provide a simple and versatile approach to large‐scale production of spherical magnesium oxide via a facile seed‐induced mechanism. The spherical magnesium oxide may find widespread use as a packing material in the group separation of polycylic aromatic hydrocarbons from target samples.  相似文献   

8.
Three test magnets of pancake-shaped coils using Bi-2212 tape were prepared by the wind-and-react technique. At liquid helium temperature, 16 pancake coils which were stacked in a volume of l4Ø ×48Øx 75H mm generated a magnetic field of 2.25 Tesla (T), which was within 1% of the calculated B0. The load lines of the magnet at every temperature from 4.2 to 30K coincided with the Ic of the short tape, up to the magnetic field of 6 T. For the quadruple pancake coil, the steady-state operational current, which produced increasing voltage with the lapse of time in a cryogenic atmosphere, was a value between the critical current (Ic) determined by the criteria of 1 ΜV/cm and l0?13 Ω·m.  相似文献   

9.
Very few hybrid organic–inorganic framework (HOIF) exhibit direct coupling between spins and dipoles and are also restricted to a particular COOH‐based system. It is shown how one can design a hybrid system to obtain such coupling based on the rational design of the organic ligands. The layered phosphonate, MnO3PC6H5?H2O, consisting of perovskite layers stacked with organic phenyl layers, is used as a starting potential candidate. To introduce dipole moment, a closely related metal phosphonate, MnO3PC6H4m‐Br?H2O is designed. For this purpose, this phosphonate is prepared from 3‐bromophenylphosphonic acid that features one electronegative bromine atom directly attached on the aromatic ring in the meta position, lowering the symmetry of precursor itself. Thus, bromobenzene moieties in MnO3PC6H4m‐Br?H2O induce a finite dipole moment. This new designed compound exhibits complex magnetism, as observed in layered alkyl chains MnO3PCnH2n+1?H2O materials, namely, 2D magnetic ordering ≈20 K followed by weak ferromagnetic ordering below 12 K (T1) with a magnetic field (H)‐induced transition ≈25 kOe below T1. All these magnetic features are exactly captured in the T and H‐dependent dielectric constant, ε′(T) and ε′(H). This demonstrates direct magnetodielectric coupling in this designed hybrid and yields a new path to tune multiferroic ordering and magnetodielectric coupling.  相似文献   

10.
The development of cost‐effective and high‐performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non‐noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high‐spin Co3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate‐spin Co4+ sites) in RBaCo2O5.5+δ (δ = 1/4; R = lanthanides) can produce a near‐ideal HER reaction path to adsorb H2O and release H2, respectively. Experimentally, the as‐synthesized (Gd0.5La0.5)BaCo2O5.75 outperforms the state‐of‐the‐art Pt/C catalyst in many aspects. The proof‐of‐concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near‐optimal synergistic catalytic effect, which is pivotal for rational design of oxygen‐containing materials.  相似文献   

11.
While the properties of functional oxide thin films often depend strongly on oxygen stoichiometry, there have been few means available for its control in a reliable and in situ fashion. This work describes the use of DC bias as a means of systematically controlling the stoichiometry of oxide thin films deposited onto yttria‐stabilized zirconia substrates. Impedance spectroscopy is performed on the electrochemical cell Pr0.1Ce0.9O2?δ (PCO)/YSZ/Ag for conditions: T = 550 to 700 °C, pO 2 = 10?4 to 1 atm, and ΔE = ‐100 to 100 mV. The DC bias ΔE is used to control the effective pO 2 or oxygen activity at the PCO/YSZ interface. The non‐stoichiometry (δ) of the PCO films is calculated from the measured chemical capacitance (Cchem ). These δ values, when plotted isothermally as a function of effective pO 2, established, either by the surrounding gas composition alone, or in combination with applied bias, agree well with each other and to predictions based on a previously determined defect model. These results confirm the suitability of using bias to precisely control δ of thin films in an in situ fashion and simultaneously monitor these changes by measurement of Cchem . Of further interest is the ability to reach effective pO 2s as high as 280 atm.  相似文献   

12.
We have measured the resistivity ρ and Hall coefficient RH at 300, 77, and 4.2 K of p-type Pb1−XCdXS epitaxial films as a function of substrate temperature Ts, film thickness d, and composition x. The films were vapor deposited on cleaved (111) BaF2 (111) SrF2 , and (001) NaCl and polished (001) BaF2 substrates. The Hall mobility μH at 77 K of p-type PbS films increased approximately linearly from 1 × 104 to 2 × 104 cm2 V−1 sec−1 as Ts was varied from 400 to 500°C, respectively. Both μH and RH increased with d due to the presence of a strong p-type surface layer on the exposed surface. The x of the films was controlled by the x of the source material and Ts. The mole fraction of CdS could be varied between 0.002 < x < 0.06 by varying T between 513 and 410°C, respectively, and using source material with x = 0.06. The electrical properties of samples grown on freshly cleaved (111) BaF2 and (111) SrF2 were essentially identical even though the lattice constant of SrF2 is a better match to Pb1−XCdXS than BaF2. The RH and μH at 77 K were independent of thickness for low substrate temperatures and were observed to increase with increasing thickness for high substrate temperatures. The μH increased with decreasing temperature and became temperature independent below about 30 K, which is similar to the behavior observed in other lead salt compounds. However, the magnitude of μH was considerable lower throughout the 300 to 4.2 K temperature range than for PbS films. The RH showed little temperature variation, which is typical lead salt behavior. Supported by Naval Surface Weapons Center Independent Research Funds.  相似文献   

13.
Developments of the high field ESR system in Kobe University is presented. Using Gunn oscillators and backward traveling oscillators (BWO), we can cover the frequency region from 30 to 1183.6 GHz with the use of InSb detector. Pulsed magnetic field up to 30 T is available and we are now trying to extend the field up to 40 T. Temperature range is from 1.8 to 300 K. Using this system, we studied S=1/2 ladder like system Cu2(C5H12N2)2Cl4, and found a new magnetic transition at 10.1 T at 1.8 K. The temperature dependence of ESR in Cu2(C5H12N2)2CI4 shows g-shift below 8 K which corresponds to the maximum of the magnetic susceptibility. The g-shift below 8 K suggests the increase of the quantum fluctuation in the system, and the role of the quantum fluctuation in Cu2(C5H12N2)2CI4 is discussed.  相似文献   

14.
Optical properties of structurally perfect CuInSe2 single crystals were studied in the temperature range of 4.2–300 K with the use of photoluminescence, optical absorption, optical reflection, and wavelength-modulated optical reflection (WMOR). The intense lines of free excitons A (~1.0414 eV) and B (~1.0449 eV) with a half-width of ~0.7 meV at 4.2 K are found to be related to two extrema of valence band split by a crystal field. The excitons emission line C (~1.2779 eV) in WMOR spectra are related to a lower valence band split-off by spin-orbit interaction. Within the context of the quasi-cubic Hopfield model, the parameters of valence band splitting ΔCF=5.2 meV and ΔSO=234.7 meV defined by the crystal and spin-orbit interaction, respectively, are calculated. In the region of the fundamental absorption edge, the lines of bound excitons are found with a half-width ~0.3 meV that is indicative of a high quality of grown CuInSe2 crystals.  相似文献   

15.
Four (BEDT‐TTF)4A[M(C2O4)3]·DMF (DMF = dimethylformamide) salts of the organic donor molecule bis(ethylenedithio)tetrathiafulvalene (BEDT‐TTF) with metal oxalate anions, where A = (NH4, K), M = Cr ( 1 ); A = NH4, M = Fe ( 2 ); A = K, M = Cr ( 3 ); and A = NH4, M = Cr ( 3′ ) were prepared by electrocrystallization. These salts were characterized by single‐crystal X‐ray diffraction, electron spin resonance (ESR) spectroscopy, electrical resistance measurements, and electronic band structure calculations. The structures (with space group C2/c) consist of alternating β″‐type layers of BEDT‐TTF and an approximately hexagonal network formed by the A+ cation and the metal, with the solvent molecule, DMF, occupying hexagonal cavities in the anion layer. All of the salts are two‐dimensional organic metals down to 4.2 K and do not exhibit superconductivity. Their electronic band structure is similar to that of the known organic superconductor β″‐(BEDT‐TTF)4H3O[Fe(C2O4)3]·BN. The ESR spectra of salts 1 and 3′ are characterized by two resonances, one of Gaussian shape arising from the 3d localized electrons of Cr3+ and the other of Lorentzian (and Dysonian) shape due to the conduction electrons in the organic layers. On the basis of the calculated Fermi surfaces it is suggested that these salts could exhibit an interesting magnetoresistance behavior if disorder does not prevent the observation of the Shubnikov‐de Haas oscillations.  相似文献   

16.
A point defect chemistry approach to improving thermoelectric (TE) properties is introduced, and its effectiveness in the emerging mid‐temperature TE material Mg2(Si,Sn) is demonstrated. The TE properties of Mg2(Si,Sn) are enhanced via the synergistical implementation of three types of point defects, that is, Sb dopants, Mg vacancies, and Mg interstitials in Mg2Si0.4Sn0.6‐xSbx with high Sb content (x > 0.1), and it is found that i) Sb doping at low ratios tunes the carrier concentration while it facilitates the formation of Mg vacancies at high doping ratios (x > 0.1). Mg vacancies act as acceptors and phonon scatters; ii) the concentration of Mg vacancies is effectively controlled by the Sb doping ratio; iii) excess Mg facilitates the formation of Mg interstitials that also tunes the carrier concentration; vi) at the optimal Sb‐doping ratio near x ≈ 0.10 the lattice thermal conductivity is significantly reduced, and a state‐of‐the‐art figure of merit ZT > 1.1 is attained at 750 K in 2 at% Zn doped Mg2Si0.4Sn0.5Sb0.1 specimen. These results demonstrate the significance of point defects in thermoelectrics, and the promise of point defect chemistry as a new approach in optimizing TE properties.  相似文献   

17.
一种实用化实时测温系统的测温灵敏度   总被引:1,自引:1,他引:0       下载免费PDF全文
基于基尔霍夫定律,利用半导体激光器InGaAs/I及钽酸锂热释电探测器设计了一种实用化的实时测温系统。基于该系统A/D转换器件的分辨率、V(T)-T曲线的温度灵敏度及其与测温范围间的制约关系,确定了系统应选用16位的芯片为其A/D转换器件;基于该系统的测温精度、V(T)-T曲线的相对温度灵敏度及其与波长间的关系,对其工作波长的优化选择进行了进一步的讨论;基于探头的温度分辨力、A/D转换器件的分辨率以及与V(T)-T曲线的温度灵敏度间的制约关系,对其波长带宽的优化设计进行了进一步的分析,并给出了系统在673K~1473K内的测温灵敏度。对系统进行优化设计后,在测温范围的低温段,其灵敏度不低于0.5K;在测温范围的高温段,则不低于0.1K。在673K~1473K内,其测温不确定度不低于0.3%。  相似文献   

18.
The electrochemical properties and phase stability of the multi‐component olivine compound LiMn1/3Fe1/3Co1/3PO4 are studied experimentally and with first‐principles calculation. The formation of a solid solution between LiMnPO4, LiFePO4, and LiCoPO4 at this composition is confirmed by XRD patterns and the calculated energy. The experimental and first‐principle results indicate that there are three distinct regions in the electrochemical profile at quasi‐open‐circuit potentials of 3.5 V, ~4.1 V, and ~4.7 V, which are attributed to Fe3+/Fe2+, Mn3+/Mn2+, and Co3+/Co2+ redox couples, respectively. However, exceptionally large polarization is observed only for the region near 4.1 V of Mn3+/Mn2+ redox couples, implying an intrinsic charge transfer problem. An ex situ XRD study reveals that the reversible one‐phase reaction of Li extraction/insertion mechanism prevails, unexpectedly, for all lithium compositions of LixMn1/3Fe1/3Co1/3PO4 (0 ≤ x ≤ 1) at room temperature. This is the first demonstration that the well‐ordered, non‐nanocrystalline (less than 1% Li–M disorder and a few hundred nanometer size particle) olivine electrode can be operated solely in a one‐phase mode.  相似文献   

19.
Perovskite manganites are viewed as one of the key building blocks of oxide spintronics devices due to their attractive physical properties. However, cation off‐stoichiometry at epitaxial interfaces between manganites and other materials can lead to interfacial dead layers, severely reducing the device performance. Here, transmission electron microscopy and synchrotron‐based spectroscopy are used to demonstrate that oxygen vacancies during growth serve as a critical factor for modifying the cation stoichiometry in pulsed laser deposited La0.8Sr0.2MnO3 films. Near the film/substrate (SrTiO3) interface, A‐site cations (La/Sr) are in excess when oxygen vacancies are induced during film growth, partially substituting Mn. Simultaneously, Sr cations migrate towards the film surface and form a SrO rock‐salt monolayer. Consequentially, a gradient of the Mn nominal valence is observed along the film growth direction, leading to anomalous magnetic properties. The results narrow the selection range of useful oxygen pressures during deposition and demonstrate that accurate cation stoichiometry can only be achieved after oxygen vacancies are eliminated during growth. This finding suggests that the oxygen pressure serves as a tuning parameter for the interfacial dead layers and, hence, for control over device properties.  相似文献   

20.
The effects of using a blocking dielectric layer and metal nanoparticles (NPs) as charge‐trapping sites on the characteristics of organic nano‐floating‐gate memory (NFGM) devices are investigated. High‐performance NFGM devices are fabricated using the n‐type polymer semiconductor, poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)), and various metal NPs. These NPs are embedded within bilayers of various polymer dielectrics (polystyrene (PS)/poly(4‐vinyl phenol) (PVP) and PS/poly(methyl methacrylate) (PMMA)). The P(NDI2OD‐T2) organic field‐effect transistor (OFET)‐based NFGM devices exhibit high electron mobilities (0.4–0.5 cm2 V?1 s?1) and reliable non‐volatile memory characteristics, which include a wide memory window (≈52 V), a high on/off‐current ratio (Ion/Ioff ≈ 105), and a long extrapolated retention time (>107 s), depending on the choice of the blocking dielectric (PVP or PMMA) and the metal (Au, Ag, Cu, or Al) NPs. The best memory characteristics are achieved in the ones fabricated using PMMA and Au or Ag NPs. The NFGM devices with PMMA and spatially well‐distributed Cu NPs show quasi‐permanent retention characteristics. An inkjet‐printed flexible P(NDI2OD‐T2) 256‐bit transistor memory array (16 × 16 transistors) with Au‐NPs on a polyethylene naphthalate substrate is also fabricated. These memory devices in array exhibit a high Ion/Ioff (≈104 ± 0.85), wide memory window (≈43.5 V ± 8.3 V), and a high degree of reliability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号