首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 136 毫秒
1.
Milkability is a trait related to the milking efficiency of an animal, and it is a component of the herd profitability. Due to its economic importance, milkability is currently included in the selection index of the Italian Simmental cattle breed with a weight of 7.5%. This lowly heritable trait is measured on a subjective scale from 1 to 3 (1 = slow, 3 = fast), and genetic evaluations are performed by pedigree-based BLUP. Genomic information is now available for some animals in the Italian Simmental population, and its inclusion in the genetic evaluation system could increase accuracy of breeding values and genetic progress for milkability. The aim of this study was to test the feasibility and advantages of having a genomic evaluation for this trait in the Italian Simmental population. Phenotypes were available for 131,308 cows. A total of 9,526 animals had genotypes for 42,152 loci; among the genotyped animals, 2,455 were cows with phenotypes, and the other were their relatives. The youngest cows with both phenotypes and genotypes (n = 900) were identified as selection candidates. Variance components and heritability were estimated using pedigree information, whereas genetic and genomic evaluations were carried out using BLUP and single-step genomic BLUP (ssGBLUP), respectively. In addition, a weighted ssGBLUP was assessed using genomic regions from a genome-wide association study. Evaluation models were validated using theoretical and realized accuracies. The estimated heritability for milkability was 0.12 ± 0.01. The mean theoretical accuracies for selection candidates were 0.43 ± 0.08 (BLUP) and 0.53 ± 0.06 (ssGBLUP). The mean realized accuracies based on linear regression statistics were 0.29 (BLUP) and 0.40 (ssGBLUP). No genomic regions were significantly associated with milkability, thus no improvements in accuracy were observed when using weighted ssGBLUP. Results indicated that genomic information could improve the accuracy of breeding values and increase genetic progress for milkability in Italian Simmental.  相似文献   

2.
Fatty acid (FA) composition is one of the most important aspects of milk nutritional quality. However, the inclusion of this trait as a breeding goal for dairy species is hampered by the logistics and high costs of phenotype recording. Fourier-transform infrared spectroscopy (FTIR) is a valid and cheap alternative to laboratory gas chromatography (GC) for predicting milk FA composition. Moreover, as for other novel phenotypes, the efficiency of selection for these traits can be enhanced by using genomic data. The objective of this research was to compare traditional versus genomic selection approaches for estimating genetic parameters and breeding values of milk fatty acid composition in dairy sheep using either GC-measured or FTIR-predicted FA as phenotypes. Milk FA profiles were available for a total of 923 Sarda breed ewes. The youngest 100 had their own phenotype masked to mimic selection candidates. Pedigree relationship information and genotypes were available for 923 and 769 ewes, respectively. Three statistical approaches were used: the classical-pedigree-based BLUP, the genomic BLUP that considers the genomic relationship matrix G, and the single-step genomic BLUP (ssGBLUP) where pedigree and genomic relationship matrices are blended into a single H matrix. Heritability estimates using pedigree were lower than ssGBLUP, and very similar between GC and FTIR regarding the statistical approach used. For some FA, mostly associated with animal diet (i.e., C18:2n-6, C18:3n-3), random effect of combination of flock and test date explained a relevant quota of total variance, reducing the heritability estimates accordingly. Genomic approaches (genomic BLUP and ssGBLUP) outperformed the traditional pedigree method both for GC and FTIR FA. Prediction accuracies in the older cohort were larger than the young cohort. Genomic prediction accuracies (obtained using either G or H relationship matrix) in the young cohort of animals, where their own phenotypes were masked, were similar for GC and FTIR. Multiple-trait analysis slightly affected genomic breeding value accuracies. These results suggest that FTIR-predicted milk FA composition could represent a valid option for inclusion in breeding programs.  相似文献   

3.
《Journal of dairy science》2022,105(2):923-939
Single-step genomic BLUP (ssGBLUP) is a method for genomic prediction that integrates matrices of pedigree (A) and genomic (G) relationships into a single unified additive relationship matrix whose inverse is incorporated into a set of mixed model equations (MME) to compute genomic predictions. Pedigree information in dairy cattle is often incomplete. Missing pedigree potentially causes biases and inflation in genomic estimated breeding values (GEBV) obtained with ssGBLUP. Three major issues are associated with missing pedigree in ssGBLUP, namely biased predictions by selection, missing inbreeding in pedigree relationships, and incompatibility between G and A in level and scale. These issues can be solved using a proper model for unknown-parent groups (UPG). The theory behind the use of UPG is well established for pedigree BLUP, but not for ssGBLUP. This study reviews the development of the UPG model in pedigree BLUP, the properties of UPG models in ssGBLUP, and the effect of UPG on genetic trends and genomic predictions. Similarities and differences between UPG and metafounder (MF) models, a generalized UPG model, are also reviewed. A UPG model (QP) derived using a transformation of the MME has a good convergence behavior. However, with insufficient data, the QP model may yield biased genetic trends and may underestimate UPG. The QP model can be altered by removing the genomic relationships linking GEBV and UPG effects from MME. This altered QP model exhibits less bias in genetic trends and less inflation in genomic predictions than the QP model, especially with large data sets. Recently, a new model, which encapsulates the UPG equations into the pedigree relationships for genotyped animals, was proposed in simulated purebred populations. The MF model is a comprehensive solution to the missing pedigree issue. This model can be a choice for multibreed or crossbred evaluations if the data set allows the estimation of a reasonable relationship matrix for MF. Missing pedigree influences genetic trends, but its effect on the predictability of genetic merit for genotyped animals should be negligible when many proven bulls are genotyped. The SNP effects can be back-solved using GEBV from older genotyped animals, and these predicted SNP effects can be used to calculate GEBV for young-genotyped animals with missing parents.  相似文献   

4.
《Journal of dairy science》2022,105(6):5221-5237
Approximate multistep methods to calculate reliabilities for estimated breeding values in large genetic evaluations were developed for single-trait (ST-R2A) and multitrait (MT-R2A) single-step genomic BLUP (ssGBLUP) models. First, a traditional animal model was used to estimate the amount of nongenomic information for the genotyped animals. Second, this information was used with genomic data in a genomic BLUP model (genomic BLUP/SNP-BLUP) to approximate the total amount of information and ssGBLUP reliabilities for the genotyped animals. Finally, reliabilities for the nongenotyped animals were calculated using a traditional animal model where the increased information due to genomic data for the genotyped animals is accounted for by including pseudo-record counts for the genotyped animals. The approaches were tested using a multiple-trait ssGBLUP model on 2 data sets. The first data set (data 1) was small enough such that exact ssGBLUP model reliabilities could be computed by inversion and compared with the approximation method reliabilities. Data 1 had 46,535 first-, 35,290 second-, and 23,780 third-lactation 305-d milk yield records from 47,124 Finnish Red dairy cows. The pedigree comprised 64,808 animals, of which 19,757 were genotyped. We examined the efficiency of the MT-R2A approximation on a large data set (data 2) derived from the joint Nordic (Danish, Finnish, and Swedish) Holstein dairy cattle data. Data 2 had 17.8 million 305-d milk records from 8.3 million cows and first 3 lactations. The pedigree had 11 million animals of which 274,145 were genotyped on 46,342 SNP markers. For data 1, correlations between the exact ssGBLUP model and the ST-R2A for the genotyped (nongenotyped) animals were 0.995 (0.987), 0.965 (0.984), and 0.950 (0.983) for first, second, and third lactation, respectively. Correspondingly, correlations between exact ssGBLUP reliabilities and MT-R2A for the genotyped (nongenotyped) animals were 0.995 (0.993), 0.992 (0.991), and 0.990 (0.990) for first, second, and third lactation, respectively. The regression coefficients (b1) of ssGBLUP reliability on ST-R2A for the genotyped (nongenotyped) animals ranged from 0.87 (0.94) for first lactation to 0.68 (0.93) for third lactation, whereas for MT-R2A they were between 0.91 (0.99) for first lactation to 0.89 (0.99) for third lactation. Correspondingly, the intercepts varied from 0.11 (0.05) to 0.3 (0.06) for ST-R2A and from 0.06 (0.01) to 0.07 (0.02) for MT-R2A. The computing time for the approximation method was approximately 12% of that required by the direct exact approach. In conclusion, the developed approximate approach allows calculating estimated breeding value reliabilities in the ssGBLUP model even for large data sets.  相似文献   

5.
The success and sustainability of a breeding program incorporating genomic information is largely dependent on the accuracy of predictions. For low heritability traits, large training populations are required to achieve high accuracies of genomic estimated breeding values (GEBV). By including genotyped and nongenotyped animals simultaneously in the evaluation, the single-step genomic BLUP (ssGBLUP) approach has the potential to deliver more accurate and less biased genomic evaluations. The aim of this study was to compare the accuracy and bias of genomic predictions for various traits in Canadian Holstein cattle using ssGBLUP and multi-step genomic BLUP (msGBLUP) under different strategies, such as (1) adding genomic information of cows in the analysis, (2) testing different adjustments of the genomic relationship matrix, and (3) using a blending approach to obtain GEBV from msGBLUP. The following genomic predictions were evaluated regarding accuracy and bias: (1) GEBV estimated by ssGBLUP; (2) direct genomic value estimated by msGBLUP with polygenic effects of 5 and 20%; and (3) GEBV calculated by a blending approach of direct genomic value with estimated breeding values using polygenic effects of 5 and 20%. The effect of adding genomic information of cows in the evaluation was also assessed for each approach. When genomic information was included in the analyses, the average improvement in observed reliability of predictions was observed to be 7 and 13 percentage points for reproductive and workability traits, respectively, compared with traditional BLUP. Absolute deviation from 1 of the regression coefficient of the linear regression of de-regressed estimated breeding values on genomic predictions went from 0.19 when using traditional BLUP to 0.22 when using the msGBLUP method, and to 0.14 when using the ssGBLUP method. The use of polygenic weight of 20% in the msGBLUP slightly improved the reliability of predictions, while reducing the bias. A similar trend was observed when a blending approach was used. Adding genomic information of cows increased reliabilities, while decreasing bias of genomic predictions when using the ssGBLUP method. Differences between using a training population with cows and bulls or with only bulls for the msGBLUP method were small, likely due to the small number of cows included in the analysis. Predictions for lowly heritable traits benefit greatly from genomic information, especially when all phenotypes, pedigrees, and genotypes are used in a single-step approach.  相似文献   

6.
Assessment of accuracy of genomic prediction for French Lacaune dairy sheep   总被引:1,自引:0,他引:1  
Genomic selection in Lacaune dairy sheep was investigated based on genotypes from the OvineSNP50 BeadChip (Illumina Inc., San Diego, CA). Historical artificial insemination progeny-tested rams formed a population of 2,892 genotyped rams. Additional ungenotyped rams and females were included by single-step genomic BLUP (ssGBLUP). Three prediction strategies were tried: pseudo-BLUP (using all rams and daughter yield deviations), pseudo-ssGBLUP (using all rams and daughter yield deviations), and regular ssGBLUP (using all phenotypes and pedigree in an animal model). The population linkage disequilibrium was determined, with an average squared correlation coefficient of 0.11 for markers closer than 0.1 cM (lower than in dairy cattle). The estimated effective population is 370 individuals. Gain in accuracy of genomic selection over parent averages ranged from 0.10 to 0.20. Highest accuracies and lowest bias were found using regular ssGBLUP. Transition to a genomic breeding scheme is possible but costs need to be carefully evaluated.  相似文献   

7.
Test-day traits are important for genetic evaluation in dairy cattle and are better modeled by multiple-trait random regression models (RRM). The reliability and bias of genomic estimated breeding values (GEBV) predicted using multiple-trait RRM via single-step genomic best linear unbiased prediction (ssGBLUP) were investigated in the 3 major dairy cattle breeds in Canada (i.e., Ayrshire, Holstein, and Jersey). Individual additive genomic random regression coefficients for the test-day traits were predicted using 2 multiple-trait RRM: (1) one for milk, fat, and protein yields in the first, second, and third lactations, and (2) one for somatic cell score in the first, second, and third lactations. The predicted coefficients were used to derive GEBV for each lactation day and, subsequently, the daily GEBV were compared with traditional daily parent averages obtained by BLUP. To ensure compatibility between pedigree and genomic information for genotyped animals, different scaling factors for combining the inverse of genomic (G?1) and pedigree (A?122) relationship matrices were tested. In addition, the inclusion of only genotypes from animals with accurate breeding values (defined in preliminary analysis) was compared with the inclusion of all available genotypes in the analyzes. The ssGBLUP model led to considerably larger validation reliabilities than the BLUP model without genomic information. In general, scaling factors used to combine the G?1 and A?122 matrices had small influence on the validation reliabilities. However, a greater effect was observed in the inflation of GEBV. Less inflated GEBV were obtained by the ssGBLUP compared with the parent average from traditional BLUP when using optimal scaling factors to combine the G?1 and A?122 matrices. Similar results were observed when including either all available genotypes or only genotypes from animals with accurate breeding values. These findings indicate that ssGBLUP using multiple-trait RRM increases reliability and reduces bias of breeding values of young animals when compared with parent average from traditional BLUP in the Canadian Ayrshire, Holstein, and Jersey breeds.  相似文献   

8.
Single-step genomic BLUP (ssGBLUP) requires compatibility between genomic and pedigree relationships for unbiased and accurate predictions. Scaling the genomic relationship matrix (G) to have the same averages as the pedigree relationship matrix (i.e., scaling by averages) is one way to ensure compatibility. This requires computing both relationship matrices, calculating averages, and changing G, whereas only the inverses of those matrices are needed in the mixed model equations. Therefore, the compatibility process can add extra computing burden. In the single-step Bayesian regression, the scaling is done by including a mean (μg) as a fixed effect in the model. The parameter μg can be interpreted as the average of the breeding values of the genotyped animals. In this study, such scaling, called automatic, was implemented in ssGBLUP via Quaas-Pollak transformation of the inverse of the relationship matrix used in ssGBLUP (H), which combines the inverses of the pedigree and genomic relationship matrices. Comparisons involved a simulated data set, and the genomic relationship matrix was computed using different allele frequencies either from the current population (i.e., realized allele frequencies), equal among all the loci, or from the base population. For all of the scenarios, we computed bias [defined as the average difference between true breeding values (TBV) and genomic estimated breeding values (GEBV)], accuracy (defined as the correlation between TBV and GEBV), and dispersion (defined as the regression coefficient of GEBV on TBV). With no scaling, the bias expressed in terms of genetic standard deviations was 0.86, 0.64, and 0.58 with realized, equal, and base population allele frequencies, respectively. With scaling by averages, which is currently used in ssGBLUP, bias was 0.07, 0.08, and 0.03, respectively. With automatic scaling, bias was 0.18 regardless of allele frequencies. Accuracies were similar among scaling methods, but about 0.1 lower in the scenario without scaling. The GEBV were more inflated without any scaling, whereas the automatic scaling performed similarly to the scaling by averages. The average dispersion for those methods was 0.94. When μg was treated as random, with the variance equal to differences between pedigree and genomic relationships, the bias was the same as with the scaling by averages. The automatic scaling is biased, especially when μg is treated as a fixed effect. The bias may be small in real data with fewer generations, when traits are undergoing weak selection, or when the number of genotyped animals is large.  相似文献   

9.
The objective of this study was to investigate the genetic basis of energy balance (EB) and the potential use of genomic selection to enable EB to be incorporated into selection programs. Energy balance provides an essential link between production and nonproduction traits because both depend on a common source of energy. A small number (527) of Dutch Holstein-Friesian heifers with phenotypes for EB were genotyped. Direct genomic values were predicted for these heifers using a model that included the genotypic information. A polygenic model was also applied to predict estimated breeding values using only pedigree information. A 10-fold cross-validation approach was employed to assess the accuracies of the 2 sets of predicted breeding values by correlating them with phenotypes. Because of the small number of phenotypes, accuracies were relatively low (0.29 for the direct genomic values and 0.21 for the estimated breeding values), where the maximum possible accuracy was the square root of heritability (0.57). Despite this, the genomic model produced breeding values with reliability double that of the breeding values produced by the polygenic model. To increase the accuracy of the genomic breeding values and make it possible to select for EB, measurement and recording of EB would need to improve. The study suggests that it may be possible to select for minimally recorded traits; for instance, those measured on experimental farms, using genomic selection. Overall, the study demonstrated that genomic selection could be used to select for EB, confirming its genetic background.  相似文献   

10.
This study demonstrated the feasibility of a genomic evaluation for the dairy cattle population for which the small national training population can be complemented with foreign information from international evaluations. National test-day milk yield data records for the Slovenian Brown Swiss cattle population were analyzed. Genomic evaluation was carried out using the single-step genomic best linear unbiased prediction method (ssGBLUP), resulting in genomic estimated breeding values (GEBV). The predominantly female group of genotyped animals, representing the national training population in the single-step genomic evaluation, was further augmented with 7,024 genotypes of foreign progeny-tested sires from an international Brown Swiss InterGenomics genomic evaluation (https://interbull.org/ib/whole_cop). Additionally, the estimated breeding values for the altogether 7,246 genotyped domestic and foreign sires from the 2019 sire multiple across-country evaluation (MACE), were added to the ssGBLUP as external pseudophenotypic information. The ssGBLUP method, with integration of MACE information by avoiding double counting, was then performed, resulting in MACE-enhanced GEBV (GEBVM). The methods were empirically validated with forward prediction. The validation group consisted of 315 domestic males and 1,041 domestic females born after 2012. Increase, inflation, and bias of the GEBV(M) reliability (REL) were assessed for the validation group with a focus on females. All individuals in the validation benefited from genomic evaluations using both methods, but the GEBV(M) REL increased most for the youngest selection candidates. Up to 35 points of GEBV REL could be assigned to national genomic information, and up to 17 points of GEBVM REL could additionally be attributed to the integration of foreign sire genomic and MACE information. Results indicated that the combined foreign progeny-tested sire genomic and external MACE information can be used in the single-step genomic evaluation as an equivalent replacement for domestic phenotypic information. Thus, an equal or slightly higher genomic breeding value REL was obtained sooner than the pedigree-based breeding value REL for the female selection candidates. When the abundant foreign progeny-tested sire genomic and MACE information was used to complement available national genomic and phenotypic information in single-step genomic evaluation, the genomic breeding value REL for young-female selection candidates increased approximately 10 points. Use of international information provides the possibility to upgrade small national training populations and obtain satisfying reliability of genomic breeding values even for the youngest female selection candidates, which will help to increase selection efficiency in the future.  相似文献   

11.
Genetically linked small and large dairy cattle populations were simulated to test the effect of different sources of information from foreign populations on the accuracy of predicting breeding values for young animals in a small population. A large dairy cattle population (PL) with >20 generations was simulated, and a small subpopulation (PS) with 3 generations was formed as a related population, including phenotypes and genomic information. Predicted breeding values for young animals in the small population were calculated using BLUP and single-step genomic BLUP (ssGBLUP) in 4 different scenarios: (S1) 3,166 phenotypes, 22,855 pedigree animals, and 1,000 to 6,000 genotypes for PS; (S2) S1 plus genomic estimated breeding value (GEBV) for 4,475 sires from PL as external information; (S3) S1 plus 221,580 phenotypes, 402,829 pedigree animals, and 53,558 genotypes for PL; and (S4) single nucleotide polymorphism (SNP) effects calculated based on PL data. The ability to predict true breeding value was assessed in the youngest third of the genotyped animals in the small population. When data only from the small population were used and 1,000 animals were genotyped, the accuracy of GEBV was only 1 point greater than the estimated breeding value accuracy (0.32 vs. 0.31). Adding external GEBV for sires from PL did not considerably increase accuracy (0.33 vs. 0.32 in S1). Combining phenotypes, pedigree, and genotypes for PS and PL was beneficial for predicting accuracy of GEBV in the small population, and the prediction accuracy of GEBV in this scenario was 0.38 compared with 0.31 from estimated breeding values. When SNP effects from PL were used to predict GEBV for young genotyped animals from PS, accuracy was greatest (0.56). With 6,000 genotyped animal in PS, accuracy was greatest (0.61) with the combined populations. In a small population with few genotypes, the highest accuracy of evaluation may be obtained by using SNP effects derived from a related large population.  相似文献   

12.
It has been shown that single-step genomic BLUP (ssGBLUP) can be reformulated, resulting in an equivalent SNP model that includes the explicit imputation of gene contents of all ungenotyped animals in the pedigree. This reformulation reveals the underlying mechanism enabling ungenotyped animals to contribute information to genotyped animals via estimates of marker effects and consequently to the reliability of genomic predictions, a key feature generally associated with the single-step approach. Irrespective of which BLUP formulation is used for genomic prediction, with increasing numbers of genotyped animals, the marker-oriented model is recommended when calculating the reliabilities of genomic predictions. This approach has the advantage of a manageable and stable size of the model matrix that needs to be inverted to calculate analytical prediction error variances of marker effects, an advantage that also holds for prediction with the single-step model. However, when including imputed genotypes in the design matrix of marker effects, an additional imputation residual term has to be considered to account for the prediction error of imputation. We summarize some of the theoretical aspects associated with the calculation of analytical reliabilities of single-step predictions. Derivations are based on the equivalent reformulation of ssGBLUP as a marker-oriented model and the calculation of prediction error variances of marker effects. We propose 2 approximations that allow for a substantial reduction of the complexity of the matrix operations involved, while retaining most of the relevant information required for reliability calculations. We additionally provide a general framework for an implementation of single-step reliability approximation using standard animal model reliabilities as a starting point. Finally, we demonstrate the effectiveness of the proposed approach using a small example extracted from data of the routine evaluation on dual-purpose Fleckvieh (Simmental) cattle.  相似文献   

13.
Genomic evaluation of French dairy goats is routinely conducted using the single-step genomic BLUP (ssGBLUP) method. This method has the advantage of simultaneously using all phenotypes, pedigrees, and genotypes. However, ssGBLUP assumes that all SNP explain the same amount of genetic variance, which is unlikely in the case of traits whose major genes or QTL are segregating. In this study, we investigated the effect of weighted ssGBLUP and its alternatives, which give more weight to SNP associated with the trait, on the accuracy of genomic evaluation of milk production, udder type traits, and somatic cell scores. The data set included 2,955 genotyped animals and 2,543,680 pedigree animals. The number of phenotypes varied with the trait. The accuracy of genomic evaluation was assessed on 205 genotyped Alpine and 146 genotyped Saanen goats born between 2009 and 2012. For traits with unknown QTL, weighted ssGBLUP was less accurate than, or as accurate as, ssGBLUP. For traits with identified QTL (i.e., QTL only present in the Saanen breed), weighted ssGBLUP outperformed ssGBLUP by between 2 and 14%.  相似文献   

14.
The objective was to compare methods of modeling missing pedigree in single-step genomic BLUP (ssGBLUP). Options for modeling missing pedigree included ignoring the missing pedigree, unknown parent groups (UPG) based on A (the numerator relationship matrix) or H (the unified pedigree and genomic relationship matrix), and metafounders. The assumptions for the distribution of estimated breeding values changed with the different models. We simulated data with heritabilities of 0.3 and 0.1 for dairy cattle populations that had more missing pedigrees for animals of lesser genetic merit. Predictions for the youngest generation and UPG solutions were compared with the true values for validation. For both traits, ssGBLUP with metafounders provided accurate and unbiased predictions for young animals while also appropriately accounting for genetic trend. Accuracy was least and bias was greatest for ssGBLUP with UPG for H for the trait with heritability of 0.3 and with UPG for A for the trait with heritability of 0.1. For the trait with heritability of 0.1 and UPG for H, the UPG accuracy (SD) was ?0.49 (0.12), suggesting poor estimates of genetic trend despite having little bias for validations on young, genotyped animals. Problems with UPG estimates were likely caused by the lesser amount of information available for the lower heritability trait. Hence, UPG need to be defined differently based on the trait and amount of information. More research is needed to investigate accounting for UPG in A22 to better account for missing pedigrees for genotyped animals.  相似文献   

15.
Methods for genomic prediction were evaluated for an Israeli Holstein dairy population of 713,686 cows and 1,305 progeny-tested bulls with genotypes. Inclusion of genotypes of 343 elite cows in an evaluation method that considers pedigree, phenotypes, and genotypes simultaneously was also evaluated. Two data sets were available: a complete data set with production records from 1985 through 2011, and a reduced data set with records after 2006 deleted. For each production trait, a multitrait animal model was used to compute traditional genetic evaluations for parities 1 through 3 as separate traits. Evaluations were calculated for the reduced and complete data sets. The evaluations from the reduced data set were used to calculate parent average for validation bulls, which was the benchmark for comparing gain in predictive ability from genomics. Genomic predictions for bulls in 2006 were calculated using a Bayesian regression method (BayesC), genomic BLUP (GBLUP), single-step GBLUP (ssGBLUP), and weighted ssGBLUP (WssGBLUP). Predictions using BayesC and GBLUP were calculated either with or without an index that included parent average. Genomic predictions that included elite cow genotypes were calculated using ssGBLUP and WssGBLUP. Predictive ability was assessed by coefficients of determination (R2) and regressions of predictions of 135 validation bulls with no daughters in 2006 on deregressed evaluations of those bulls in 2011. A reduction in R2 and regression coefficients was observed from parities 1 through 3. Fat and protein yields had the lowest R2 for all the methods. On average, R2 was lowest for parent averages, followed by GBLUP, BayesC, ssGBLUP, and WssGBLUP. For some traits, R2 for direct genomic values from BayesC and GBLUP were lower than those for parent averages. Genomic estimated breeding values using ssGBLUP were the least biased, and this method appears to be a suitable tool for genomic evaluation of a small genotyped population, as it automatically accounts for parental index, allows for inclusion of female genomic information without preadjustments in evaluations, and uses the same model as in traditional evaluations. Weighted ssGBLUP has the potential for higher evaluation accuracy.  相似文献   

16.
The aim of this study was to compare genetic (co)variance components and prediction accuracies of breeding values from genomic random regression models (gRRM) and pedigree-based random regression models (pRRM), both defined with or without an additional environmental gradient. The used gradient was a temperature-humidity index (THI), considered in statistical models to investigate possible genotype by environment (G×E) interactions. Data included 106,505 test-day records for milk yield (MY) and 106,274 test-day records for somatic cell score (SCS) from 12,331 genotyped Holstein Friesian daughters of 522 genotyped sires. After single nucleotide polymorphism quality control, all genotyped animals had 40,468 single nucleotide polymorphism markers. Test-day traits from recording years 2010 to 2015 were merged with temperature and humidity data from the nearest weather station. In this regard, 58 large-scale farms from the German federal states of Berlin-Brandenburg and Mecklenburg-West Pomerania were allocated to 31 weather stations. For models with a THI gradient, additive genetic variances and heritabilities for MY showed larger fluctuations in dependency of DIM and THI than for SCS. For both traits, heritabilities were smaller from the gRRM compared with estimates from the pRRM. Milk yield showed considerably larger G×E interactions than SCS. In genomic models including a THI gradient, genetic correlations between different DIM × THI combinations ranged from 0.26 to 0.94 for MY. For SCS, the lowest genetic correlation was 0.78, estimated between SCS from the last DIM class and the highest THI class. In addition, for THI × THI combinations, genetic correlations were smaller for MY compared with SCS. A 5-fold cross-validation was used to assess prediction accuracies from 4 different models. The 4 different models were gRRM and pRRM, both modeled with or without G×E interactions. Prediction accuracy was the correlation between breeding values for the prediction data set (i.e., excluding the phenotypic records from this data set) with respective breeding values considering all phenotypic information. Prediction accuracies for sires and for their daughters were largest for the gRRM considering G×E interactions. Such modeling with 2 covariates, DIM and THI, also allowed accurate predictions of genetic values at specific DIM. In comparison with a pRRM, the effect of a gRRM with G×E interactions on gain in prediction accuracies was stronger for daughters than for sires. In conclusion, we found stronger effect of THI alterations on genetic parameter estimates for MY than for SCS. Hence, gRRM considering THI especially contributed to gain in prediction accuracies for MY.  相似文献   

17.
Single-step genomic evaluations have the advantage of simultaneously combining all pedigree, phenotypic, and genotypic information available. However, systems with a large number of genotyped animals have some computational challenges. In many genomic breeding programs, genomic predictions of young animals should become available for selection decisions in the shortest time possible, which requires either a very effective estimation or an approximation with negligible loss in accuracy. We investigated different procedures for predicting breeding values of young genotyped animals without setting up the full single-step system augmented for the additional genotypes. Methods were based on transmitting the information from single-step breeding values of genotyped animals that took part in the previous full run to young animals, either through genomic relationships or through a marker-based model. The different procedures were tested on real data from the April 2017 run of the German-Austrian official genomic evaluation for Fleckvieh. The data set included 62,559 genotyped animals and was used to run single-step evaluations for 23 conformation traits. A further data set comprising 1,768 young animals was used for interim prediction and we called it the validation set. The reference values for validation were the predicted breeding values of the young animals from a full single-step run containing the genotypes of all 64,327 animals. Correlations between the approximated predictions and those from the full single-step run also containing genotypes from young animals averaged 0.9932 for the best method (from 0.990 to 0.995 across traits). In conclusion, prediction of single-step breeding values for young animals can be well approximated using systems of size equal to the number of markers.  相似文献   

18.
Single-step genomic prediction models utilizing both genotyped and nongenotyped animals are likely to become the prevailing tool in genetic evaluations of livestock. Various single-step prediction models have been proposed, based either on estimation of individual marker effects or on direct prediction via a genomic relationship matrix. In this study, a classical pedigree-based animal model, a regular single-step genomic BLUP (ssGBLUP) model, algorithm for proven and young (APY) with 2 strategies for choosing core animals, and a single-step Bayesian regression (ssBR) model were compared for 305-d production traits (milk, fat, protein) in the Finnish red dairy cattle population. A residual polygenic effect with 10% of total genetic variance was included in the single-step models to reduce inflation of genomic predictions. Validation reliability was calculated as the squared Pearson correlation coefficient between genomically enhanced breeding value (GEBV) and yield deviation for masked records for 2,056 validation cows from the last year in the data set investigated. The results showed that gains of 0.02 to 0.04 on validation reliability were achieved by using single-step methods compared with the classical animal model. The regular ssGBLUP model and ssBR model with an extra polygenic effect yielded the same results. The APY methods yielded similar reliabilities as the regular ssGBLUP and ssBR. Exact prediction error variance of GEBV could be obtained by ssBR to avoid any approximation methods used for ssGBLUP when inversion left-hand side of mixed model equations is computationally infeasible for large data sets.  相似文献   

19.
The objective of this study was to assess the reliability and bias of estimated breeding values (EBV) from traditional BLUP with unknown parent groups (UPG), genomic EBV (GEBV) from single-step genomic BLUP (ssGBLUP) with UPG for the pedigree relationship matrix (A) only (SS_UPG), and GEBV from ssGBLUP with UPG for both A and the relationship matrix among genotyped animals (A22; SS_UPG2) using 6 large phenotype-pedigree truncated Holstein data sets. The complete data included 80 million records for milk, fat, and protein yields from 31 million cows recorded since 1980. Phenotype-pedigree truncation scenarios included truncation of phenotypes for cows recorded before 1990 and 2000 combined with truncation of pedigree information after 2 or 3 ancestral generations. A total of 861,525 genotyped bulls with progeny and cows with phenotypic records were used in the analyses. Reliability and bias (inflation/deflation) of GEBV were obtained for 2,710 bulls based on deregressed proofs, and on 381,779 cows born after 2014 based on predictivity (adjusted cow phenotypes). The BLUP reliabilities for young bulls varied from 0.29 to 0.30 across traits and were unaffected by data truncation and number of generations in the pedigree. Reliabilities ranged from 0.54 to 0.69 for SS_UPG and were slightly affected by phenotype-pedigree truncation. Reliabilities ranged from 0.69 to 0.73 for SS_UPG2 and were unaffected by phenotype-pedigree truncation. The regression coefficient of bull deregressed proofs on (G)EBV (i.e., GEBV and EBV) ranged from 0.86 to 0.90 for BLUP, from 0.77 to 0.94 for SS_UPG, and was 1.00 ± 0.03 for SS_UPG2. Cow predictivity ranged from 0.22 to 0.28 for BLUP, 0.48 to 0.51 for SS_UPG, and 0.51 to 0.54 for SS_UPG2. The highest cow predictivities for BLUP were obtained with the most extreme truncation, whereas for SS_UPG2, cow predictivities were also unaffected by phenotype-pedigree truncations. The regression coefficient of cow predictivities on (G)EBV was 1.02 ± 0.02 for SS_UPG2 with the most extreme truncation, which indicated the least biased predictions. Computations with the complete data set took 17 h with BLUP, 58 h with SS_UPG, and 23 h with SS_UPG2. The same computations with the most extreme phenotype-pedigree truncation took 7, 36, and 15 h, respectively. The SS_UPG2 converged in fewer rounds than BLUP, whereas SS_UPG took up to twice as many rounds. Thus, the ssGBLUP with UPG assigned to both A and A22 provided accurate and unbiased evaluations, regardless of phenotype-pedigree truncation scenario. Old phenotypes (before 2000 in this data set) did not affect the reliability of predictions for young selection candidates, especially in SS_UPG2.  相似文献   

20.
《Journal of dairy science》2023,106(7):4813-4824
The shape of the lactation curve is linked to an animal's health, feed requirements, and milk production throughout the year. Random regression models (RRM) are widely used for genetic evaluation of total milk production throughout the lactation and for milk yield persistency. Genomic information used with the single-step genomic BLUP method (ssGBLUP) substantially improves the accuracy of genomic prediction of breeding values in the main dairy cattle breeds. The aim of this study was to implement an RRM using ssGBLUP for milk yield in Saanen dairy goats in France. The data set consisted of 7,904,246 test-day records from 1,308,307 lactations of Saanen goats collected in France between 2000 and 2017. The performance of this type of evaluation was assessed by applying a validation step with data targeting candidate bucks. The model was compared with a nongenomic evaluation and a traditional evaluation that use cumulated performance throughout the lactation model (LM). The incorporation of genomic information increased correlations between daughter yield deviations (DYD) and estimated breeding values (EBV) obtained with a partial data set for candidate bucks. The LM and the RRM had similar correlation between DYD and EBV. However, the RRM reduced overestimation of EBV and improved the slope of the regression of DYD on EBV obtained at birth. This study shows that a genomic evaluation from a ssGBLUP RRM is possible in dairy goats in France and that RRM performance is comparable to a LM but with the additional benefit of a genomic evaluation of persistency. Variance of adjacent SNPs was studied with LM and RRM following the ssGBLUP. Both approaches converged on approximately the same regions explaining more than 1% of total variance. Regions associated with persistency were also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号